Evaluation of Hot Mix Asphalt Moisture Sensitivity Using the Nottingham Asphalt Test Equipment

Final Report March 2010

IOWA STATE UNIVERSITY

Institute for Transportation

Sponsored by

the Iowa Highway Research Board (IHRB Project TR-555) and the Iowa Department of Transportation (InTrans Project 06-251)

About the Institute for Transportation

The mission of the Institute for Transportation (InTrans) at Iowa State University is to develop and implement innovative methods, materials, and technologies for improving transportation efficiency, safety, reliability, and sustainability while improving the learning environment of students, faculty, and staff in transportation-related fields.

Iowa State University Disclaimer Notice

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Iowa State University Non-discrimination Statement

Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, gender identity, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and Diversity, (515) 294-7612.

Iowa Department of Transportation Statements

Federal and state laws prohibit employment and/or public accommodation discrimination on the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual orientation or veteran's status. If you believe you have been discriminated against, please contact the Iowa Civil Rights Commission at 800-457-4416 or Iowa Department of Transportation's affirmative action officer. If you need accommodations because of a disability to access the Iowa Department of Transportation's services, contact the agency's affirmative action officer at 800-262-0003.

The preparation of this (report, document, etc.) was financed in part through funds provided by the Iowa Department of Transportation through its "Agreement for the Management of Research Conducted by Iowa State University for the Iowa Department of Transportation," and its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
IHRB Project TR-555			
4. Title and Subtitle		5. Report Date	
Evaluation of Hot Mix Asphalt Moisture S	Sensitivity Using the Nottingham	March 2010	
Asphalt Test Equipment		6. Performing Organization Code	
7. Author(s)		8. Performing Organization Report No.	
R. Christopher Williams, Tamer M. Break	ah	InTrans Project 06-251	
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)	
Institute for Transportation			
Iowa State University		11. Contract or Grant No.	
2711 South Loop Drive, Suite 4700			
Ames, IA 50010-8664			
12. Sponsoring Organization Name and	Address	13. Type of Report and Period Covered	
Iowa Highway Research Board		Final Report	
Iowa Department of Transportation		14. Sponsoring Agency Code	
800 Lincoln Way			
Ames, IA 50010			

15. Supplementary Notes

Visit www.intrans.iastate.edu for color PDF files of this and other research reports.

16. Abstract

Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits; however, there are several factures that can lead to premature pavement failure. One such factor is moisture sensitivity.

AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures, but the results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the *Mechanistic-Empirical Pavement Design Guide* (MEPDG) and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the results of that research were not favorable.

This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.

17. Key Words	18. Distribution Statement		
compaction—dynamic modulus test—flow number—MEPDG		No restrictions.	
19. Security Classification (of this report) 20. Security Classification (of this page)		21. No. of Pages	22. Price
Unclassified. Unclassified.		138	NA

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

EVALUATION OF HOT MIX ASPHALT MOISTURE SENSITIVITY USING THE NOTTINGHAM ASPHALT TEST EQUIPMENT

Final Report March 2010

Principal Investigator

R. Christopher Williams
Associate Professor
Department of Civil, Construction, and Environmental Engineering, Iowa State University

Authors

R. Christopher Williams and Tamer M. Breakah

Sponsored by the Iowa Highway Research Board (IHRB Project TR-555)

Preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its research management agreement with the Institute for Transportation,
InTrans Project 06-251.

A report from

Institute for Transportation Iowa State University

2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 Phone: 515-294-8103

Fax: 515-294-0467 www.intrans.iastate.edu

TABLE OF CONTENTS

ACKNOWLEDGMENTS	XI
1. INTRODUCTION	1
1.1 Background 1.2 Problem Statement 1.3 Objectives 1.4 Methodology and Approach 1.5 Hypothesis	122
1.6 Significance of Work 1.7 Report Organization	3
2. LITERATURE REVIEW	
2.1 Moisture Susceptibility 2.2 Causes of Moisture Damage 2.3 Adhesion Theories 2.4 Cohesion Theories 2.5 Tests for Determining Moisture Susceptibility	4 6 7
2.5 Tests for Determining Moisture Susceptibility 2.6 Dynamic Modulus Test	17
2.7 Dynamic Modulus Master Curves	19
2.8 Repeated Load Test (Flow Number) Test	
2.9 Ohio State Model 3. EXPERIMENTAL PLAN AND TEST SETUP	
3.1 Experimental Plan 3.2 Sample Conditioning	
3.3 Dynamic Modulus Test	
3.4 Flow Number Test	
3.5 Indirect Tensile Strength Testing	28
4. DYNAMIC MODULUS TEST RESULTS AND ANALYSIS	30
4.1 Approach	30
4.2 Dynamic Modulus Test Results	
4.3 Statistical Analysis	
4.4 Master Curves	
4.6 Comparison between E* Ratio and Master Curve	
4.7 Dynamic Modulus Test Conclusions	
5. FLOW NUMBER TEST RESULTS AND ANALYSIS	52
5.1 Test Results	52
5.2 Statistical Analysis	
6. AASHTO T 283 TEST RESULTS	65
7. COMPARISON BETWEEN THE DIFFERENT TEST METHODS	68
8 CONCLUSIONS AND RECOMMENDATIONS	73

8.1 Conclusions	73
8.2 Recommendations	73
REFERENCES	75
APPENDIX A. JOB MIX FORMULAS	A-1
APPENDIX B. DYNAMIC MODULUS TEST RESULTS	B-1
APPENDIX C. INDIRECT TENSILE STRENGTH RESULTS	C-1

LIST OF FIGURES

Figure 2-1. Haversine loading pattern or stress pulse for dynamic modulus test	18
Figure 2-2. Flow number loading	20
Figure 2-3 Relationship Between ε_p/N and N (1 psi = 6.9 kPa), after	22
Figure 2-4. Relationship between parameter A and M_R/σ_d , after	23
Figure 3-1. Dynamic modulus test setup	
Figure 3-2. Flow number test setup	28
Figure 3-3. Indirect tensile strength test setup	29
Figure 4-1. Distribution of E* ratios at different temperatures	36
Figure 4-2. Distribution of E* ratios at different frequencies	36
Figure 4-3. Master curve for mix 6N	
Figure 4-4. Master curve for mix 218	41
Figure 4-5. Master curve for mix 235I	
Figure 4-6. Master curve for mix 235S	
Figure 4-7. Master curve for mix 330B	42
Figure 4-8. Master curve for mix 330I.	
Figure 4-9. Master curve for mix 330S	
Figure 4-10. Master curve for mix ALT	44
Figure 4-11. Master curve for mix Ded	
Figure 4-12. Master curve for mix F52.	45
Figure 4-13. Master curve for mix HW4	45
Figure 4-14. Master curve for mix I80B.	
Figure 4-15. Master curve for mix I80S	
Figure 4-16. Master curve for mix NW	
Figure 4-17. Master curve for mix Rose	47
Figure 4-18. Master curve for mix Jewell	
Figure 5-1. Variability of FN ratios for freezer-conditioned samples tested in air	
Figure 5-2. Variability of strain at flow number ratios for freezer-conditioned samples	
air	
Figure 7-1. Comparison between average E* ratio and TSR	
Figure 7-2. Comparison between E* (37°C-10 Hz) ratio and TSR	
Figure 7-3. Comparison between E* (37°C-10 Hz) and average E* ratios	
Figure 7-4. Comparison between parameter <i>m</i> ratio and TSR	
Figure 7-5. Comparison between average E* and parameter <i>m</i> ratios	
Figure 7-6. Comparison between E* (37°C-10 Hz) and parameter m ratios	71

LIST OF TABLES

Table 2-1. Moisture-sensitivity tests on loose samples	8
Table 2-2. Moisture-sensitivity tests on compacted samples	11
Table 3-1. Properties of sampled mixes	
Table 3-2. Samples tested at the different conditions	
Table 4-1. E* ratios	
Table 4-2. Phase angle ratios	32
Table 4-3. Statistical comparison between the different temperature-frequency combinations to	for
E* ratios	34
Table 4-4. Statistical comparison between the different temperature-frequency combinations to	for
E* ratios	
Table 4-5. All pairwise comparison for E* ratios	37
Table 4-6. All pairwise comparison for phase angle ratios	37
Table 4-7. Ranking of mixes based on E* ratio	38
Table 4-8. Ranking of mixes based on phase angle ratio	
Table 4-9. Area under the master curve (GPa)	48
Table 4-10. Storage modulus ratios	49
Table 4-11. Loss modulus ratios	50
Table 4-12. Statistical comparisons for E* and master curves	51
Table 5-1. Flow number results for the control samples	53
Table 5-2. Flow number results for the water-conditioned samples tested under water	54
Table 5-3. Flow number results for the freezer-conditioned samples tested in air	
Table 5-4. Flow number results for the freezer-conditioned samples tested under water	57
Table 5-5. Flow number results for unconditioned samples tested under water	58
Table 5-6. Ratio of flow number test parameters for water-conditioned samples tested under	
water to control samples	59
Table 5-7. Ratio of flow number test parameters for freezer-conditioned samples tested in air	to
control samples	
Table 5-8. Ratio of flow number test parameters for freezer-conditioned samples tested under	
water to control samples	
Table 5-9. Ratio of flow number test parameters for unconditioned samples tested under water	
control samples	
Table 5-10. Ranking of the mixes based on the ratio of flow number test parameters for water	· -
1	61
Table 5-11. Ratio of flow number test parameters for freezer-conditioned samples tested in air	
control samples	
Table 5-12. Ratio of flow number test parameters for freezer-conditioned samples tested under	
water to control samples	
Table 6-1. Tensile strength for both groups	
Table 6-2. TSR and mixture ranking	
Table 7-1. Results from different tests	
Table 7-2. Statistical comparison between the different methods	
Table 7-3. Ranking of the mixes using the different methods	
Table B-1. Dynamic modulus results for control mixes (GPa)	
Table B-2. Phase angle values for control mixes	.B - 6

Table B-3. Dynamic modulus results for moisture conditioned mixes (GPa)	B-10
Table B-4. Phase angle values for moisture conditioned mixes	B-14
Table C-1. Indirect tensile strength test results	

ACKNOWLEDGMENTS

The authors would l	like to thank the Iov	ya Highway Resea	rch Board for spo	onsoring this research.
				8 - 2 - 2 - 2

1. INTRODUCTION

1.1 Background

Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits. A good design is one that provides the expected performance with appropriate economic considerations. One of the factors that leads to premature failure of pavements is moisture sensitivity. The presence of water in pavements can be detrimental if combined with other factors, such as freeze-thaw cycling. Many factors can affect the moisture sensitivity of a mix, and can be divided into three main categories. The first category is the material properties, which include the physical and chemical properties of the asphalt and the aggregates. The second category is the mixture properties, which include asphalt content, film thickness, and the permeability of the mixture (interconnectivity of the air voids). The third category is the external factors; these factors include construction, traffic, and environmental factors (Santucci 2002).

For many years, moisture damage has been a major concern for asphalt technologists. Researchers have been searching for a test that differentiates between good and poor performing asphalt concrete mixtures from stripping potential since the 1920s (Solaimanian et al. 2003). Since the 1920s, it has been known that the problem relates to the loss of adhesion between asphalt and aggregate and the loss of cohesion within the asphalt binder. The challenge has been to find a test that identifies moisture susceptible mixes (Solaimanian et al. 2003). The standard test used to identify the moisture susceptibility of asphalt mixtures is the modified Lottman test (AASHTO T 283). The American Association of State Highway and Transportation Officials (AASHTO) T 283 was used with Marshall mix design methodology and with the development of the Superpave mix design methodology; the same method was adopted with the modification of the compaction method. Although AASHTO T 283 has been used for several years as the standard test for moisture sensitivity, it assists in minimizing the problem but it does not appear to be a very accurate indicator of stripping (Brown et al. 2001). Two of the tests that have the potential to replace indirect tensile strength testing contained within AASHTO T 283 are the dynamic modulus and flow number tests. The advantage of using these two tests is that they are performed by the Asphalt Mixture Performance Tester (AMPT) and are used to predict the mixture performance. An advantage of the dynamic modulus test is that it is the main input for Level 1 design in the *Mechanistic-Empirical Pavement Design Guide* (MEPDG).

1.2 Problem Statement

AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures. The results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the MEPDG and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the

results of that research were not in favor of using the flow number test in moisture-susceptibility evaluation.

1.3 Objectives

This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.

1.4 Methodology and Approach

The first objective of this research was achieved by running dynamic modulus and flow number tests on 16 field-procured/laboratory-compacted specimens at different conditioning/test conditions. The dynamic modulus test was performed on unconditioned samples and samples conditioned by moisture saturation with a freeze-thaw cycle at various frequencies and test temperatures. The same samples were then tested for flow number. The second objective will be achieved by testing samples using the AASHTO T 283 procedure and comparing the results to those achieved using the dynamic modulus and flow number tests. To fulfill the third objective, flow number testing was performed on samples with four different conditioning/testing conditions. The four conditions are unconditioned without water submersion, moisture saturated with water submersion testing, moisture saturation with freeze/thaw conditioning without water submersion testing, and moisture saturation with freeze/thaw conditioning and with water submersion testing. Five of the 16 mixes were tested under a fifth condition, which is unconditioned with water submersion to study the effect of the water submersion of the samples. The comparison between the results of the unconditioned set of samples and the conditioned set was used to evaluate the moisture damage. The fourth objective was achieved by running a comprehensive statistical analysis of the laboratory results.

1.5 Hypothesis

The laboratory testing was performed under two main hypotheses that were tested statistically.

- The first hypothesis was that the dynamic modulus test results are directly affected by moisture conditioning of the samples. The effect of moisture was studied on the dynamic modulus value, the phase angle, and the combined effect of dynamic modulus and phase angle represented by the loss modulus and the storage modulus.
- The second hypothesis was that although the flow number test is not recommended for the evaluation of the moisture susceptibility of an asphalt mixture, it can still have value by investigating other parameters that can be calculated from the test results.

Some additional hypotheses were addressed by answering the following questions:

- Which test procedure better simulates moisture damage: AASHTO T 283, dynamic modulus, or flow number?
- Do these hot mix asphalt (HMA) mixture tests rank the HMA mixtures the same?
- Is there a difference between the results from the different conditioning/testing conditions?

1.6 Significance of Work

The significance of this research work is that it employs tests that are commonly used in the asphalt industry and uses them to evaluate the moisture susceptibility of the mixes. The research also examines the tests from a perspective different from in previous research.

1.7 Report Organization

This report is divided into eight chapters. The first chapter is an introduction, which gives a brief background about the topic and a problem statement. In this chapter, the research objectives and hypothesis are presented, the methodology is outlined, and the significance of the research is presented. Chapter 2 of this report discusses past research and studies that have been related to moisture damage or moisture susceptibility. Included is a brief description of the research conducted along with major findings of the study that directly apply to this research. Chapter 3 outlines the experimental plan and procedures used to sample, prepare, and test specimens for this research. Chapter 4 presents the results of the dynamic modulus testing. Chapter 5 presents the results of the flow number testing with a selection of the parameter that best represents the moisture susceptibility of the mixes. Chapter 6 presents the results from the AASHTO T 283 testing. Chapter 7 presents a statistical analysis that compares the different tests and recommends the most appropriate test. Chapter 8 presents the summary, conclusions, and recommendations for further research.

2. LITERATURE REVIEW

2.1 Moisture Susceptibility

The presence of water in an asphalt pavement is unavoidable. Several sources can lead to the presence of water in the pavement. Water can infiltrate the pavement from the surface via cracks in the surface of the pavement, via the interconnectivity of the air-void system or cracks, from the bottom due to an increase in the ground water level, or from the sides. Inadequate drying of aggregate during the mixing process can lead to the presence of water in the pavement as well (Santucci 2002).

Moisture damage can be defined as the loss of strength and durability in asphalt mixtures due to the effects of moisture (Little and Jones 2003). Premature failure may result due to stripping when critical environmental conditions act together with poor and/or incompatible materials and traffic (Brown et al. 2001). Moisture susceptibility is a problem that typically leads to the stripping of the asphalt binder from the aggregate, and this stripping makes an asphalt concrete mixture ravel and disintegrate (Brown et al. 2001). Moisture damage can occur due to three main mechanisms: (1) loss of cohesion of the asphalt film, (2) failure of the adhesion between the aggregate particles and the asphalt film, and (3) degradation of aggregate particles due to freezing (Brown et al. 2001). There are six contributing processes that have been attributed to causing moisture damage in asphalt mixtures: detachment, displacement, spontaneous emulsification, pore-pressure—induced damage, hydraulic scour, and environmental effects (Little and Jones 2003; Roberts et al. 1996). Not one of the above factors necessarily works alone in damaging an asphalt concrete pavement, as they can work in a combination of the processes.

2.2 Causes of Moisture Damage

Moisture damage can be defined as the loss of strength and durability in asphalt mixtures due to the effects of moisture (Little and Jones 2003). Moisture can damage HMA in two ways: (1) loss of bond between asphalt cement or mastic and fine and coarse aggregate or (2) weakening of mastic due to the presence of moisture. There are six contributing factors that have been attributed to causing moisture damage in HMA: detachment, displacement, spontaneous emulsification, pore-pressure—induced damage, hydraulic scour, and environmental effects (Roberts et al. 1996; Little and Jones 2003). Not one of the above factors necessarily works alone in damaging an HMA pavement, as they can work in a combination of the processes. Therefore, a need exists to examine the adhesive interface between aggregates and asphalt and the cohesive strength and durability of mastics (Graff 1986; Roberts et al. 1996; Little and Jones 2003; Cheng et al. 2003). A loss of the adhesive bond between aggregate and asphalt can lead to stripping and raveling, while a loss of cohesion can lead to a weakened pavement that is susceptible to premature cracking and pore pressure damage (Majidzadeh and Brovold 1968; Kandhal 1994; Birgission et al. 2003). A brief discussion about these factors is presented next.

2.2.1 Detachment

Detachment is the separation of an asphalt film from an aggregate surface by a thin film of water without an obvious break in the film (Majidzadeh and Brovold 1968). Adhesive bond energy theory explains the rationale behind detachment. In order for detachment not to happen, a good bond must develop between asphalt and aggregate; this is known as wettability (Scott 1978). As free surface energy of adhesion or surface tension decreases, the bond between the aggregate and asphalt increases. Consider a three-phase system of aggregate, asphalt, and water. Water reduces the surface energy of a system because aggregate surfaces have a stronger preference for water than asphalt (Majidzadeh and Brovold 1968). Cheng et al. (2002) calculated adhesive bond strengths by measuring the surface energies of components, the asphalt-aggregate interface, in the presence of water, and when under dry conditions.

2.2.2 Displacement

Displacement can occur at a break in the asphalt film at the aggregate surface where water can intrude and displace asphalt from aggregate (Fromm 1974; Tarrer and Wagh 1991). The break in an asphalt film can come from an incomplete coating of aggregate particles, inadequate coating at sharp edges of aggregates, or pinholes in the asphalt film. Chemical reaction theory can be used to explain stripping as a detachment mechanism according to Scott (1978). The pH of water at the point of film rupture can increase the process of displacement thereby increasing the separation of asphalt from aggregate (Scott 1978; Tarrer and Wagh 1991; Little and Jones 2003).

2.2.3 Spontaneous Emulsification

Spontaneous emulsification occurs due to inverted emulsion of water droplets in asphalt cement (Little and Jones 2003). The water diffuses into asphalt cement, thereby attaching itself to an aggregate and causing a separation between asphalt and aggregate. A loss of adhesive bond occurs between asphalt and aggregate. Clays and asphalt additives can further aggravate the emulsification process (Scott 1978; Fromm 1974; Asphalt Institute 1981).

2.2.4 Pore Pressure

Pore pressure can develop in an HMA pavement due to entrapped water or water that traveled into air-void systems in vapor form (Little and Jones 2003; Kandhal 1994). The pore pressure in an HMA pavement can increase due to repeated traffic loading and/or increases in temperature. If an HMA pavement is permeable, water can escape and flow out. However, if it is not permeable, the resulting increased pore pressure may surpass the tensile strength of an HMA and strips asphalt film from an aggregate, causing microcracking (Majidzadeh and Brovold 1968; Little and Jones 2003). Microcracking can also be seen in a mastic under repeated loading, thus resulting in an adhesive and/or cohesive failure (Little and Jones 2003). The rate of microcracking is accelerated by an increase in pore pressure and the presence of water in HMA. The air-void system, or permeability of a pavement, is an important property in order to control pore pressure in an HMA pavement.

2.2.5 Hydraulic Scour

Hydraulic scour (stripping) occurs at a pavement surface and is a result of repeated traffic tires on a saturated pavement surface. Water is sucked into a pavement by tire rolling action (Little and Jones 2003). Hydraulic scour may occur due to osmosis or pullback (Fromm 1974). Osmosis is the movement of water molecules from an area of high concentration to an area of low concentration. In the case of HMA, osmosis occurs in the presence of salts or salt solutions in aggregate pores. The movement of these molecules creates a pressure gradient that sucks water through the asphalt film (Mack 1964; Little and Jones 2003). The salt solution moves from an area of high concentration to an area of low concentration. Cheng et al. (2002) showed that there is a considerable amount of water that diffuses through the asphalt cement and that asphalt mastics can hold a significant amount of water.

2.2.6 Environmental Effects

Factors such as temperature, air, and water have deleterious effects on the durability of HMA (Terrel and Shute 1989; Tandon et al. 1998). Other mechanisms, such as a high water table, freeze/thaw cycles, and aging of binder or HMA, can affect the durability of HMA (Scherocman et al. 1986; Terrel and Al-Swailmi 1992,; Choubane et al. 2000). Other considerations, such as construction (segregation and raveling) and traffic, are also important.

2.3 Adhesion Theories

Four theories are used to describe the adhesion characteristics between asphalt and aggregate. The four theories are chemical reaction, surface energy, molecular orientation, and mechanical adhesion (Terrel and Al-Swailmi 1992). Surface tension of asphalt cement and aggregate, chemical composition of asphalt and aggregate, asphalt viscosity, surface texture of aggregates, aggregate porosity, aggregate clay/silt content, aggregate moisture content, and temperature at the time of mixing with asphalt cement and aggregate are material properties that affect adhesion (Terrel and Al-Swailmi 1992). A brief explanation of the four theories is presented in the following sections.

2.3.1 Chemical Reaction

The reaction of acidic and basic components of asphalt and aggregate form water insoluble compounds that resist stripping (Terrel and Al-Swailmi 1992). A chemical bond forms that allows an asphalt-aggregate mix to resist stripping. The use of basic instead of acidic aggregates can lead to better adhesion of asphalt to aggregates (Terrel and Al-Swailmi 1992).

2.3.2 Surface Energy and Molecular Orientation

Surface energy can be described by how well asphalt or water coats aggregate particles (Terrel and Al-Swailmi 1992). Water is a better wetting agent because of its lower viscosity and lower surface tension than asphalt (Little and Jones 2003). Using surface energy theory to calculate

adhesive bond energies between asphalt and aggregate and cohesive strength of a mastic is rather complex and will be discussed further under "Tests on Loose Mixture and Asphalt Binders" in Section 2.5.1.

The structuring of asphalt molecules at an asphalt-aggregate interface is molecular orientation. The adhesion between asphalt and aggregate is facilitated by a surface energy reduction at the aggregate surface where asphalt is adsorbed onto a surface (Terrel and Al-Swailmi 1992; Little and Jones 2003).

2.3.3 Mechanical Adhesion

Mechanical adhesion is a function of various aggregate physical properties, such as surface texture, porosity, absorption, surface coatings, surface area, and particle size (Terrel and Al-Swailmi 1992; Little and Jones 2003). In short, an aggregate with desirable properties that will not show a propensity to moisture damage within an HMA is wanted.

2.4 Cohesion Theories

According to Little and Jones (2003), cohesion is developed in a mastic and is influenced by the rheology of the filled binder. The cohesive strength of a mastic is a function of the interaction between the asphalt cement and mineral filler, not just of the individual components alone. The cohesive strength of a mastic is weakened due to the presence of water through increased saturation and void swelling or expansion (Terrel and Al-Swailmi 1992; Little and Jones 2003). Cheng et al. (2002) showed that the cohesive strength can be damaged in various mixtures by the diffusion of water into asphalt mastics.

2.5 Tests for Determining Moisture Susceptibility

Due to the detrimental effect of moisture damage, it is important to test the susceptibility of an asphalt mixture to moisture damage. Many tests are available; some are tests for asphalt binder, while others are for asphalt mixes. The tests for asphalt mixes are divided into tests for loose mixes and tests for compacted mixes. Despite the availability of tests for moisture susceptibility, none of them provides high correlation with field performance.

2.5.1 Tests on Loose Mixture and Asphalt Binders

Moisture-susceptibility tests that are performed on loose mixtures are conducted on asphalt-coated particles in the presence of water. The two main advantages of these tests are the testing simplicity and inexpensive nature in comparison to compacted-specimen test expenses. Another significant advantage is the use of simple equipment and procedures to conduct experiments (Solaimanian et al. 2003). The tests are summarized in Table 2-1.

Table 2-1. Moisture-sensitivity tests on loose samples (Solaimanian et al. 2003)

Test Method	ASTM	AASHTO	Other
Methylene Blue			Technical Bulletin 145, International
			Slurry Seal Association (ISSA 1989)
Film Stripping			California Test 302
Static Immersion	D1664*	T182	
Dynamic Immersion			No standard exists
Chemical			Standard Method TMH1 (Road
Immersion			Research Laboratory 1986, England)
Quick Bottle			Virginia Highway and Transportation
			Research Council (Maupin 1980)
Boiling	D3625		Tex 530-C
			Kennedy et al. 1984
Rolling Bottle			Isacsson and Jorgensen, Sweden, 1987
Net Adsorption			SHRP-A-341 (Curtis et al. 1993)
Surface Energy			Thelen 1958, HRB Bulletin 192
			Cheng et al., AAPT 2002
Pneumatic Pull-Off			Youtcheff and Aurilio (1997)

^{*}No longer available as ASTM standard.

2.5.1.1 Methylene Blue Test

The methylene blue test is used to identify "dirty" aggregates that contain harmful clays and dust (Solaimanian et al. 2003). If dust or harmful clays are on aggregate particles, they affect the adhesion of the asphalt binder to the aggregate particles, and thus, a potential for stripping may occur in the HMA. This test is used to identify aggregates that contain clays or dust. Since no asphalt is used, this test cannot measure a potential for HMA stripping.

2.5.1.2 Static Immersion Test (AASHTO T 182)

A sample of HMA mix is cured for 2 hours at 60°C before being placed in a jar and covered with water. The jar is left undisturbed for 16 to 18 hours in a water bath at 25°C. Again, the amount of stripping is visually estimated by looking at the HMA sample in the jar. The results of this test are given as either less than or greater than 95% of an aggregate surface is stripped (Solaimanian et al. 2003).

2.5.1.3 Dynamic Immersion Test

The dynamic immersion test (DIM) is similar to the static immersion test, but the DIM test is used to accelerate the stripping effect. Loose mixture is agitated in a jar filled with water in order to produce a dynamic effect (Solaimanian et al. 2003). Again, the results show that as the period of agitation increases, the amount of stripping increases; however, the tests fail to simulate pore pressure and traffic, which is the case with all loose mixture tests.

2.5.1.4 Film Stripping Test (California Test 302)

The film stripping test is a modified version of the static immersion test (AASHTO T 182). A loose mixture of asphalt-coated aggregates is aged in an oven at 60°C for 15 to 18 hours before being placed in a jar filled with water to cool. The jar with loose mix is rotated at 35 revolutions per minute (rpm) for 15 minutes to stir up the mix. Baffels in a jar stir up the mix to accelerate the stripping process. After 15 minutes, the sample is removed, the loose mixture is viewed under a fluorescent light, and the percentage of stripping is estimated. The results of this test are given in percentage of total aggregate surface stripped (Solaimanian et al. 2003).

2.5.1.5 Rolling Bottle Test

Isacsson and Jorgenson developed the Rolling Bottle Test in Sweden in 1987. The test is similar to the DIM in that aggregate chips are coated in asphalt and placed in a glass jar filled with water. The glass jar is rotated to agitate loose HMA. A visual inspection is completed to note how much asphalt has been stripped from aggregates (Solaimanian et al. 2003).

2.5.1.6 Chemical Immersion Test

A loose sample of asphalt-coated aggregate is placed in boiling water while increasing the amount of sodium carbonate. The concentration of sodium carbonate is slowly increased until stripping occurs and the concentration of sodium carbonate is recorded. The recorded number is referred to as the Riedel and Weber (R&W) number. Zero refers to distilled water, 1 refers to 0.41 g of sodium carbonate, and 9 refers to the highest concentration of sodium carbonate, or 106 g. The sample is removed from the water and sodium carbonate solution and examined for stripping (Solaimanian et al. 2003).

2.5.1.7 Boiling Water Test

Several versions of a boiling water test have been developed by various state agencies, including one from the Texas State Department of Highways and Public Transportation (Kennedy et al. 1983 and 1984). A visual inspection of stripping is made after the sample has been subjected to the action of water at an elevated temperature for a specified time (Kennedy et al. 1983 and 1984; Solaimanian et al. 2003). This test identifies mixes that are susceptible to moisture damage, but it does not account for mechanical properties or the effects of traffic (Kennedy et al. 1983 and 1984; Solaimanian et al. 2003).

2.5.1.8 Surface Reaction Test

A major problem with the tests previously presented is the dependence on visual observation for identifying stripping. The surface reaction test allows a researcher to quantify the level of stripping on loose asphalt mixtures. This procedure was developed by Ford et al. (1974). The surface reaction test evaluates the reactivity of calcareous or siliceous aggregates and reaction response to the presence of highly toxic and corrosive acids. As part of the chemical reaction, gas

is emitted, which generates a pressure, and this pressure is proportional to the aggregate surface area (Solaimanian et al. 2003). This test is based on the premise that different levels (severity) of stripping result in exposed surface areas of aggregates.

2.5.1.9 Net Adsorption Test

The Strategic Highway Research Program (SHRP) developed a test called the net adsorption test (NAT) in the early 1990s that is documented under SHRP-A-341 (Curtis et al. 1993). This test examines the asphalt-aggregate system and its affinity and compatibility (Solaimanian et al. 2003). In addition, this test also evaluates the sensitivity of the asphalt-aggregate pair. In terms of other tests, the NAT yields mixed results when compared to the indirect tensile test with moisture-conditioned specimens (Solaimanian et al. 2003). The NAT was modified by researchers at the University of Nevada–Reno, and the results were correlated with the environmental conditioning chamber (ECS) (Scholz et al. 1994). According to SHRP-A-402, the water sensitivity of a binder as estimated by NAT showed little or no correlation to wheel-tracking tests on the mixes (Scholz et al. 1994).

2.5.1.10 Wilhelmy Plate Test and Universal Sorption Device

Researchers at Texas A&M University have led in investigating cohesive and adhesive failure models based on surface energy theory and a moisture diffusion model based on results from the Universal Sorption Device (USD) (Cheng et al. 2003). The principle behind surface energy theory is that the surface energy of an asphalt and aggregate is a function of the adhesive bond between asphalt and aggregate and the cohesive bonding within asphalt (Solaimanian et al. 2003). The Wilhelmy plate is used to determine the surface free energy of an asphalt binder where the dynamic contact angle is measured between asphalt and a liquid solvent (Cheng et al. 2003; Solaimanian et al. 2003). The USD test is used to determine the surface free energy of an aggregate (Cheng et al. 2003; Solaimanian et al. 2003). The surface free energy is then used to compute the adhesive bond between an asphalt binder and aggregate. Cheng et al. (2002) showed that the adhesive bond per unit area of aggregate is highly dependent on the aggregate and asphalt surface energies. Also, this test shows that stripping occurs because the affinity of an aggregate for water is much greater than that for asphalt, thus weakening the bond at the asphalt-aggregate interface (Cheng et al. 2002).

Current research at Texas A&M University (Bhasin et al. 2006; Masad et al. 2006) has shown that the moisture resistance of asphalt-aggregate combinations depends on surface energies of asphalt binders and aggregates. The factors considered are film thickness, aggregate shape characteristics, surface energy, air-void distribution, and permeability. The ratio of adhesive bond energy under dry conditions to adhesive bond energy under wet conditions can be used to identify moisture-susceptible asphalt-aggregate combinations, and a ratio of 0.80 should be used as a criterion to separate good and poor combinations of materials. Dynamic mechanical analysis tests were conducted to evaluate a mixture's ability to accumulate damage under dry and moist conditions. A mechanistic approach using a form of the Paris law was used for the evaluation of moisture damage. The mechanical properties are influenced by aggregate gradation, aggregate

shape characteristics, and film thickness. This approach captures the influence of moisture on crack growth and is able to distinguish good and poor performing HMA mixtures.

2.5.2 Tests on Compacted Mixtures

Tests conducted on compacted mixtures include laboratory-compacted specimens, field cores, and/or slabs compacted in a laboratory or taken from the field. Table 2-2 provides moisture-sensitivity tests that have been performed on compacted specimens. From these tests, physical and fundamental/mechanical properties can be measured while accounting for traffic/water action and pore pressure effects (Solaimanian et al. 2003). Some disadvantages of conducting tests on compacted mixtures are the expensive laboratory testing equipment, longer testing times, and potentially labor-intensive test procedures.

Table 2-2. Moisture-sensitivity tests on compacted samples (Solaimanian et al. 2003)

Test Method	ASTM	AASHTO	Other
Moisture Vapor			California Test 307
Susceptbility			Developed in late 1940's
Immersion-	D1075	T165	ASTM STP 252 (Goode 1959)
Compression			
Marshal Immersion			Stuart 1986
Freeze/thaw			Kennedy et al. 1982
Pedestal Test			
Original Lattman			NCHRP Report 246 (Lottman 1982);
Original Lottman Indirect Tension			Transportation Research Record 515
indirect Tension			(1974)
Modified Lottman		T283	NCHRP Report 274 (Tunnicliff and
Indirect Tension			Root 1984), Tex 531-C
Tunnicliff-Root	D4867		NCHRP Report 274 (Tunnicliff and
			Root 1984)
ECS with Resilient			SHRP-A-403 (Al-Swailmi and Terrel
Modulus			1994)
Hamburg Wheel			T 242 F
Tracking			Tex-242-F
Asphalt Pavement			Pavement Technology Inc., Operating
Analyzer			Manual
ECS/SPT			NCHRP 9-34 (2002-03)
Multiple			No standard swists
Freeze/thaw			No standard exists

2.5.2.1 Immersion-Compression Test

The immersion-compression test (ASTM D 1075 and AASHTO T 165-155) is among the first moisture-sensitivity tests developed based on testing 100 mm diameter compacted specimens.

This test consists of compacting two groups of specimens: a control group and a moisture-conditioned group at an elevated temperature (48.8°C water bath) for four days (Roberts et al. 1996). The compressive strength of the conditioned and control group are then measured (Roberts, et al. 1996). The average strength of the conditioned specimens over that of the control specimens is a measure of strength lost due to moisture damage (Solaimanian et al. 2003). Most agencies specify a minimum retained compressive strength of 70%. The test details are presented in ASTM Special Technical Publication 252 (Goode 1959).

2.5.2.2 Marshall Immersion Test

The procedure for producing and conditioning two groups of specimens is identical to the immersion-compression test. The only difference is that the Marshall stability test is used as the strength parameter as opposed to the compression test (Solaimanian et al. 2003). There is no documented number for the minimum retained Marshall stability.

2.5.2.3 Moisture Vapor Susceptibility

The moisture vapor susceptibility test was developed by the California Department of Transportation (California Test Method 307). A California kneading compactor is used to compact two specimens. The compacted surface of each specimen is sealed with an aluminum cap, and a silicone sealant is applied to prevent the loss of moisture (Solaimanian et al. 2003). After the specimens have been conditioned at an elevated temperature and suspended over water, testing of the specimens commences. The Hveem stabilometer is used to test both dry and moisture-conditioned specimens. A minimum Hveem stabilometer value is required for moisture-conditioned specimens, which is less than that required for dry specimens used in the mix design (Solaimanian et al. 2003).

2.5.2.4 Repeated Pore Water Pressure Stressing and Double-Punch Method

The repeated pore water pressure stressing and double-punch method was developed by Jimenez at the University of Arizona (1974). This test accounts for the effects of dynamic traffic loading and mechanical properties. In order to capture the effects of pore water pressure, the specimens are conditioned by a cyclic stress under water. After the specimen has undergone the pore pressure stressing, the tensile strength is measured using the double-punch equipment. Compacted specimens are tested through steel rods placed at either end of the specimen in a punching configuration.

2.5.2.5 Original Lottman Test

The original Lottman test was developed at the University of Idaho by Robert Lottman (1978). The laboratory procedure consists of compacting three sets of 100 mm diameter by 63.5 mm Marshall specimens to be tested dry or under accelerated moisture conditioning (Lottman et al. 1974). The following are laboratory conditions for each of the groups:

- Group 1: Control group, dry
- Group 2: Vacuum saturated with water for 30-minutes
- Group 3: Vacuum saturation followed by freeze cycle at -18°C for 15 hours and then subjected to a thaw at 60°C for 24 hours (Lottman et al. 1974).

After the conditioning phase, the indirect tensile equipment is used to conduct tensile resilient modulus and tensile strength of conditioned and dry specimens. All specimens are tested at 13°C or 23°C at a loading rate of 1.65 mm/min. The severity of moisture damage is based on a ratio of conditioned to dry specimens (tensile strength ratio [TSR]) (Lottman et al. 1974; Lottman 1982). A minimum TSR value of 0.70 is recommended (NCHRP 246). Laboratory-compacted specimens were compared to field cores and plotted against each other on a graph. The laboratory and field core specimens line up fairly close to the line of equality.

2.5.2.6 Modified Lottman Test (AASHTO T 283)

AASHTO T 283, "Resistance of Compacted Bituminous Mixture to Moisture Induced Damage," is the most commonly used test method for determining moisture susceptibility of HMA. This test is similar to the original Lottman test with only a few exceptions, as follows:

- Two groups, control versus moisture conditioned
- Vacuum saturation until a saturation level of 70% to 80% is achieved
- Test temperature and loading rate changed to 50 mm/min at 25°C.

A minimum TSR value of 0.70 is recommended, but many agencies specify a TSR value of 0.80 (Roberts et al. 1996). AASHTO T 283 was adopted by the Superpave system as the moisture test method of choice even though AASHTO T 283 was developed for the Marshall mixture design. State highway agencies have reported mixed results when using AASHTO T 283 and comparing the results to field performance (Stroup-Gardiner and Epps 1992; Solaimanian et al. 2003). NCHRP Project 9-13 looked at different factors affecting test results, such as types of compaction, diameter of specimen, degree of saturation, and freeze/thaw cycles. Conclusions from looking at the previously mentioned factors can be seen in the NCHRP Report 444 (Epps et al. 2000). The researchers concluded that either AASHTO T 283 does not evaluate moisture susceptibility or the criterion, TSR, is incorrectly specified. NCHRP 9-13 examined mixtures that have historically been moisture susceptible and ones that have not. The researchers also examined the current criteria using Marshall and Hveem compaction. A recent study at the University of Wisconsin found that no relationship exists between TSR and field performance in terms of pavement distress index and moisture damage (surface raveling and rutting) (Kanitpong and Bahia 2006). Additional factors, such as production and construction, asphalt binder, and gradation, play important roles, whereas mineralogy does not appear to be an important factor in relation to pavement performance.

AASHTO T 283 was developed based on 100 mm Marshall-compacted specimens. With the transition from 100 mm Marshall-compacted specimens to 150 mm Superpave-compacted specimens, the standard allowed the use of either 150 or 100 mm samples, and the requirements

remained the same. Research was done to investigate the effect of the different sample sizes. It was discovered that three freeze/thaw cycles for conditioning are needed when using specimens created using 150 mm Superpave specimens (Bausano et al. 2006; Kvasnak 2006). However, to continue using one freeze/thaw cycle and maintain the same probability level as attained with a TSR value for 0.80 for 100 mm Marshall-compacted specimens, a TSR value of 0.87 and 0.85 should be used for 150 mm and 100 mm Superpave-compacted specimens, respectively. A 0.80 TSR for 150 mm Superpave specimens would correspond to a TSR ratio of 0.80 for 100 mm Marshall specimens (Bausano et al. 2006; Kvasnak 2006).

2.5.2.7 Texas Freeze/Thaw Pedestal Test

The water-susceptibility test was developed by Plancher et al. (1980) at Western Research Institute but was later modified into the Texas freeze/thaw pedestal by Kennedy et al. (1983). Even though this test is rather empirical in nature, it is fundamentally designed to maximize the effects of bond and to minimize the effects of mechanical properties, such as gradation, density, and aggregate interlock, by using a uniform gradation (Kennedy et al. 1983). An HMA briquette is made according to the procedure outlined by Kennedy et al. (1983). The specimen is then placed on a pedestal in a jar of distilled water and covered. The specimen is subjected to thermal cycling and inspected each day for cracks. The number of cycles to induce cracking is a measure of the water susceptibility (Kennedy et al. 1983). The benefits of running this test are that some key failures can be seen:

- Bond failure at the asphalt-aggregate interface (stripping)
- Fracture of the thin asphalt films bonding aggregate particles (cohesive failure) by formation of ice crystals (Solaimanian et al. 2003)

2.5.2.8 ASTM D 4867 (Tunnicliff-Root Test Procedure)

ASTM D 4867, "Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures," is comparable to AASHTO T 283. The only difference between AASHTO T 283 and ASTM D 4867 is that the curing of loose mixture at 60°C in an oven for 16 hours is eliminated in ASTM D 4867. A minimum TSR of 0.70 to 0.80 are specified by highway agencies (Roberts et al. 1996).

2.5.2.9 Hamburg Wheel-Tracking Device (HWTD)

The Hamburg Wheel-Tracking Device (HWTD) was developed by Esso A.G. and is manufactured by Helmut-Wind, Inc., of Hamburg, Germany (Aschenbrener et al. 1995; Romero and Stuart 1998). Two samples of HMA beams with each beam having a geometry of 260 mm wide, 320 mm long, and 40 mm thick. This device measures the effects of rutting and moisture damage by running a steel wheel over the compacted beams immersed in hot water (typically 50°C) (Aschenbrener et al. 1995). The steel wheel is 47 mm wide and applies a load of 705 N while traveling at a maximum velocity of 340 mm/sec in the center of the sample. A sample of HMA is loaded for 20,000 passes or until 20 mm of permanent deformation occurs (Aschenbrener et al. 1995). Some important results the HWTD gives are:

- Postcompaction consolidation: deformation measured after 1,000 wheel passes
- Creep slope: number of wheel passes to create a 1 mm rut depth due to viscous flow
- Stripping slope: inverse of the rate of deformation in the linear region of the deformation curve
- Stripping inflection point: number of wheel passes at the intersection of the creep slope and stripping slope (Aschenbrener et al. 1995)

2.5.2.10 Asphalt Pavement Analyzer (APA)

The Asphalt Pavement Analyzer (APA) is a type of loaded wheel test. Rutting, moisture susceptibility, and fatigue cracking can all be examined with an APA. The predecessor to the APA is the Georgia Loaded Wheel Tester (GLWT). Similar to the GLWT, an APA can test either cylindrical or rectangular specimens. Using either specimen geometry, the conditioned and unconditioned samples are subjected to a steel wheel that transverses a pneumatic tube, which lies on top of an asphalt sample. As the wheel passes back and forth over the tube, a rut is created in a sample. Numerous passes lead to a more defined rut and, eventually, stress fractures can begin to manifest as cracks. Modeling these ruts and cracks helps to predict how different combinations of aggregate and binder for given criteria, such as temperature and loading, will react under varying circumstances. The conditioning of a sample is based on the characteristic an APA is testing. One of the main differences between an APA and a GLWT is an APA's ability to test samples under water as well as in air. Testing submerged samples allows researchers to examine moisture susceptibility of mixes (Cooley et al. 2000).

APA results are comparable to field data. A study that compared WesTrack, a full-scale test track, data with APA results found a strong relationship between field and laboratory data (Williams and Prowell 1999). An additional study at the University of Tennessee revealed that an APA sufficiently predicted the potential for rutting of 30 HMAs commonly used in Tennessee (Jackson and Baldwin 1999). A study using the APA showed that there is a strong relationship between water absorbed and APA test data. When the APA results were compared to those of AASHTO T 283, there were no strong relationships between TSR results and APA test results. The variability of the rut depth data was high; conduct the recommended study using at least three replicates (Kvasnak 2006).

To test moisture-susceptible HMA samples, specimens are created in the same manner as the specimens for testing rutting potential without moisture. The samples are placed in an APA, which has an inner box that can be filled with water. The samples are completely submerged at all times during testing; therefore, effects of evaporation do not need to be taken into account. The water bath and air in the chamber are heated to the same desired test temperature.

2.5.2.11 Flexural Fatigue Beam Test with Moisture Conditioning

Moisture damage has been known to accelerate fatigue damage in pavements. Therefore, conditioning of flexural fatigue beams was completed by Shatnawi et al. (1995). Laboratory-

compacted beams were prepared from HMA sampled at jobs, and corresponding field fatigue beams were cut from the pavement. The conditioning of the beams was as follows:

- Partial vacuum saturation of 60% to 80%
- Three repeated five-hour cycles at 60°C followed by four hours at 25°C while remaining submerged
- One five-hour cycle at -18°C (Shatnawi et al. 1995).

The specimens are then removed from a conditioning chamber and tested according to AASHTO T 321. Initial stiffness and fatigue performance were affected significantly by conditioning the specimens (Shatnawi et al. 1995).

2.5.2.12 Environmental Conditioning System (ECS)

The ECS was developed by Oregon State University as part of the SHRP-A-403 and later modified at Texas Technological University (Alam et al. 1998). The ECS subjects a membrane-encapsulated HMA specimen that is 102 mm in diameter by 102 mm in height to cycles of temperature, repeated loading, and moisture conditioning (SHRP-A-403 1992; Al-Swailmi and Terrel 1992a; Al-Swailmi and Terrel 1992b; Terrel and Al-Swailmi 1993). Some important fundamental material properties are obtained from using an ECS. These properties are resilient modulus (M_R) before and after conditioning, air permeability, and a visual estimation of stripping after a specimen has been split open (SHRP-A-403 1992). One of the significant advantages of using an ECS is the ability to influence the HMA specimens to traffic loading and the resulting effect of pore water pressure, which is close to field conditions (Solaimanian et al. 2003). The downfall of the test is that it does not provide a better relationship to field observation than what was observed using AASHTO T 283. Also, AASHTO T 283 is much less expensive to perform and less complex than the ECS.

2.5.2.13 ECS/Simple Performance Test Procedures

As a result of NCHRP Projects 9-19, 9-29, and 1-37 (NCHRP reports 465, 513, and MEPDG), new test procedures, such as asphalt mixture performance tests (AMPTs), are being evaluated. According to Witczak et al. (2002), an AMPT is defined as "A test method(s) that accurately and reliably measures a mixture response or characteristic or parameter that is highly correlated to the occurrence of pavement distress (e.g., cracking and rutting) over a diverse range of traffic and climatic conditions." The mechanical tests being looked at are the dynamic modulus |E*|, repeated axial load (F_N), and static axial creep tests (F_T). These tests are conducted at elevated temperatures to determine a mixture's resistance to permanent deformation. The dynamic modulus test is conducted at an intermediate and lower test temperature to determine a mixture's susceptibility to fatigue cracking. Witczak et al. (2002) have shown that dynamic modulus, flow time, and flow number yield promising correlations to field performance.

NCHRP 9-34 is currently looking at the aforementioned tests along with the ECS to develop new test procedures to evaluate moisture damage (Solaimanian et al. 2003). Solaimanian et al. (2006)

reported that the results of the Phase I and Phase II testing of NCHRP 9-34 show that the dynamic complex modulus (DCM) test should be coupled with the ECS for moisture sensitivity testing. This key finding of NCHRP 9-34 (NCHRP Report 589) shows that the ECS/DCM test appears to separate good performing mixes from poor performing mixes in the field when compared with TSR testing from ASTM D 4867 and that the flow number test has high variability, which makes it not recommended for use in moisture-susceptibility testing (Solaimanian et al. 2007). Bausano (2006) used the dynamic modulus test to determine the moisture susceptibility of the mixes at rutting temperature, and the results were good at distinguishing the expected mix behavior. That study recommended trying intermediate and midrange temperatures to study the effect of moisture at those temperatures (Bausano 2006).

2.6 Dynamic Modulus Test

Dynamic modulus is one of the oldest mechanistic tests to be used to measure the fundamental properties of asphalt concrete. Dynamic modulus testing has been studied since the early 1960s by Papazian (1962) and became a standard test in 1979 by the American Society for Testing and Materials (ASTM) under D 3497, "Standard Test Method for Dynamic Modulus of Asphalt Concrete Mixtures" (ASTM 2003). A sinusoidal (haversine) compressive axial stress is applied to a test specimen under the testing procedure for dynamic modulus. The testing procedure includes using various frequencies and temperatures to capture the linear viscoelastic properties of the asphalt concrete.

Dynamic modulus is a measure of the relative stiffness of a mix. Mixes that tend to have good rut resistance at high service temperatures likewise have a corresponding high stiffness. Although the tradeoff is at intermediate temperatures, stiffer mixes are often more prone to cracking in thicker pavements (NCHRP 2004). For this reason, dynamic modulus testing is conducted over a range of test temperatures and frequencies to measure the linear viscoelastic properties of asphalt concrete mixtures. The tested ranges of temperature and frequencies are used to develop a master curve for each mixture in order to exhibit the properties of the mixture over a range of reduced temperatures and/or frequencies. The use of dynamic modulus in moisture-susceptibility evaluation was studied and reported to have good results in NCHRP Report 589 (Solaimanian et al. 2007)

The dynamic complex modulus is determined by applying a uniaxial sinusoidal vertical compressive load to an unconfined or confined HMA cylindrical sample, as shown in Figure 2-1.

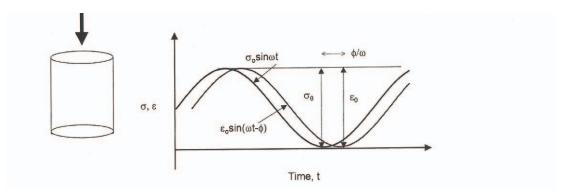


Figure 2-1. Haversine loading pattern or stress pulse for dynamic modulus test (Witczak et al. 2002)

The stress-to-strain relationship under a continuous sinusoidal load pattern for a linear viscoelastic material is defined by the dynamic complex modulus, E^* . The dynamic modulus, E^* , is the absolute value of the dynamic complex modulus. Mathematically, E^* is equal to the maximum peak dynamic stress (σ_0) divided by the peak recoverable strain (ε_0) :

$$|E^*| = \frac{\sigma_o}{\varepsilon_o} \tag{2-1}$$

The real and imaginary parts of the dynamic modulus can be written as

$$E^* = E' + iE''$$
, (2-2)

Equation (2-2) shows that E^* has two components: a real and an imaginary component. E' is referred to as the storage or elastic modulus component, while E'' is referred to as the loss or viscous modulus. The angle by which the peak recoverable strain lags behind the peak dynamic stress is referred to as the phase angle, φ . The phase angle is an indicator of the viscous properties of the material being evaluated.

Mathematically, this is expressed as

$$E^* = |E^*| \cos \phi + i |E^*| \sin \phi, \tag{2-3}$$

$$\phi = \frac{t_i}{t_p} \times 360 \tag{2-4}$$

where t_i = time lag between a cycle of stress and strain(s), t_p = time for a stress cycle(s), and i = imaginary number.

For a purely viscous material, the phase angle is 90°, while for a purely elastic material, the phase angle is 0° (NCHRP 465 2002). The dynamic modulus, a measurable "fundamental"

property of an HMA mixture, is the relative stiffness of a mix. Mixes that have a high stiffness at elevated temperatures are less likely to deform. But, stiffer mixes at an intermediate test temperature are more likely to crack in thicker pavements (Shenoy and Romero 2002).

2.7 Dynamic Modulus Master Curves

The asphalt mixtures are thermorheologically simple materials, and the time-temperature superposition principle is applicable in the linear viscoelastic state. The dynamic modulus and phase angle of asphalt mixtures can be shifted along the frequency axis to form single characteristic master curves at a desired reference temperature or frequency that is fitted to a sigmoidal function. The sigmoidal function reaches asymptotically the limiting mix stiffness. At low temperatures, the limiting mix stiffness is dependent on the glassy modulus of the binder, while at high temperatures, the limiting mix stiffness is dependent on the modulus of aggregate skeleton (Pellinen 2008).

Typically the shift factors α_T are obtained from the Williams-Landel-Ferry (WLF) equation (Williams et al. 1955):

$$\log \alpha_T = \frac{C_1(T - T_S)}{C_2 + T - T_S},\tag{2-5}$$

where C_1 and C_2 are constants, T_s is the reference temperature, and T is the temperature of each individual test.

A new method of developing the master curve for asphalt mixtures was developed in research conducted by Pellinen and Witczak (2002) at the University of Maryland. In this study, master curves were constructed fitting a sigmoidal function to the measured compressive dynamic modulus test data using non-linear least squares regression techniques (Pellinen and Witczak 2002). The shift can be done by solving the shift factors simultaneously with the coefficients of the sigmoidal function. The sigmoidal function is defined by equation (2-6) (Williams et al. 1955).

$$\log \left| E^* \right| = \delta + \frac{\alpha}{1 + e^{\beta - \gamma(\log(f_r) + s_T)}},\tag{2-6}$$

where $log|E^*| = log$ of dynamic modulus, $\delta =$ minimum modulus value, $f_r =$ reduced frequency, $\alpha =$ span of modulus values, $s_T =$ shift factor according to temperature, and β , $\gamma =$ shape parameters.

2.8 Repeated Load Test (Flow Number) Test

The flow number test (e.g., repeated load test, dynamic creep test) is based on the repeated loading and unloading of an HMA specimen where the permanent deformation of a specimen is recorded as a function of the number of load cycles. The stress applied to the specimen is divided

into two parts: seating stress and deviator stress. The deviator stress is applied for 0.1 second followed by a 0.9 second rest period for the specimen at the seating stress. There are three types of phases that occur during a repeated load test: primary, secondary, and tertiary flow. In the primary flow region, there is a decrease in strain rate with time, followed by a constant strain rate in the secondary flow region, and finally, an increase in strain rate in the tertiary flow region. Tertiary flow signifies that a specimen is beginning to deform significantly and the individual aggregate that makes up the skeleton of the mix is moving past the other "flow." The flow number is based upon the onset of tertiary flow (or the minimum strain rate recorded during the course of the test) (Robinette 2005). Figure 2-2 graphically shows flow number loading.

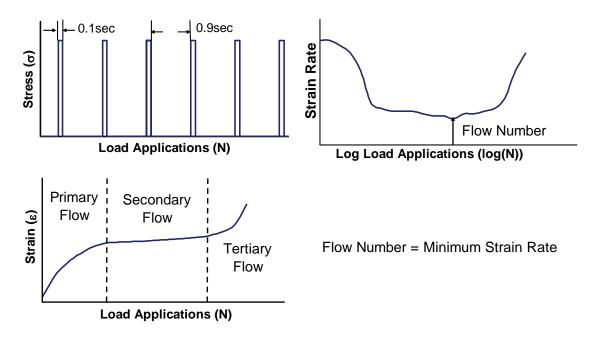


Figure 2-2. Flow number loading (Robinette 2005)

Flow number is defined as the number of load applications when shear deformation begins (Witczak et al. 2002). Flow number testing is similar to pavement loading because pavement loading is not continuous; there is a dwell period between loadings. This dwell period allows a pavement a certain amount of time to recover some strain induced by the loading. There is good correlation between field performance and the flow number. The flow number test could be used as a means of comparing mixes for rut susceptibility (Zhou and Scullion 2003). It was reported in NCHRP Report 589 that flow number test results are not satisfactory when it comes to moisture damage prediction (Solaimanian et al. 2007).

The calculation of flow number was presented in NCHRP report 513. There is a three-step process for flow number calculation. The procedure consists of (1) numerical calculation of the strain rate, (2) smoothing of the creep data, and (3) identification of the minimum smoothed creep rate because this smoothed creep rate is where the flow number occurs. Equation (2-7) was used to determine the creep rate:

$$\frac{d(\varepsilon_p)_i}{dN} = \frac{(\varepsilon_p)_{i+\Delta N} - (\varepsilon_p)_{i-\Delta N}}{2\Delta N} \quad , \tag{2-7}$$

where $\frac{d(\varepsilon_p)_i}{dN}$ = rate of change of strain with respect to cycles or creep rate at i cycle (1/cycle), $(\varepsilon_p)_{i+\Delta N}$ = strain at $i+\Delta N$ cycles, $(\varepsilon_p)_{i-\Delta N}$ = strain at $i-\Delta N$ cycles, and ΔN = number of cycles sampling points.

The next step required that the data be smoothed through a running average of five points. Two creep rates before and after and the creep rate at that instant were used. Equation (2-8) was used to determine the smoothed creep rate:

$$\frac{d\varepsilon_{i}^{'}}{dN} = \frac{1}{5} \left(\frac{d\varepsilon_{i-2\Delta N}}{dN} + \frac{d\varepsilon_{i-\Delta N}}{dN} + \frac{d\varepsilon_{i}}{dN} + \frac{d\varepsilon_{i+\Delta N}}{dN} + \frac{d\varepsilon_{i+2\Delta N}}{dN} \right), \tag{2-8}$$

where $\frac{d\varepsilon_{i}^{'}}{dN}$ = smoothed creep rate at i sec (1/cycles), $\frac{d\varepsilon_{i-2\Delta N}}{dN}$ = creep rate at i-2 ΔN cycles (1/cycles), $\frac{d\varepsilon_{i}}{dN}$ = creep rate at i-2 ΔN cycles (1/cycles), $\frac{d\varepsilon_{i}}{dN}$ = creep rate at i-2 ΔN cycles (1/cycles), and $\frac{d\varepsilon_{i+\Delta N}}{dN}$ = creep rate at i+2 ΔN cycles (1/cycles), and $\frac{d\varepsilon_{i+2\Delta N}}{dN}$ = creep rate at i+2 ΔN cycles (1/cycles)

The final step was to determine the cycle where the minimum creep rate occurs in the data set. If no minimum occurred during the test, then the flow number is reported as being greater than or equal to the number of loads applied during the course of the test. When several minimum creep rates occurred in a data set, the first minimum value is reported as the flow number.

2.9 Ohio State Model

One way to analyze the flow number test results is the Ohio State Model. This model is presented by Huang (2004). It assumes a linear relationship between log the strain and log the number of load repetitions. The formula of this relationship is:

$$\frac{\mathcal{E}_p}{N} = A(N)^{-m},\tag{2-9}$$

where ε_p is permanent strain at a specific loading cycle, N is the loading cycle, and A and m are regression constants.

Khedr (1986) analyzed the parameters of this relationship and concluded that the parameter (m) is dependent on the material type. Stress-strain pattern and intensity, stress level, and dissipated plastic strain energy during the dynamic loading affect the parameter (A). The lines achieved are nearly parallel, which means that (m) is constant for all samples of the same material tested under various conditions and is independent of the stress level and temperature, as shown in Figure 2-3. Studying the parameter (A) and applying regression analysis, the result achieved showed that (A) is a function of the applied deviator stress and the resilient modulus.

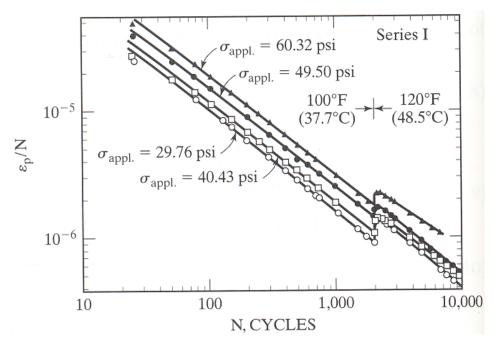


Figure 2-3 Relationship Between ε_p/N and N (1 psi = 6.9 kPa), after (Khedr 1986)

The relationship between log A and $log (MR/\sigma d)$ is a straight line, as shown in Figure 2-4 and represented by equation (2-10) (Khedr 1986).

$$A = a(\frac{M_R}{\sigma_d})^{-b},\tag{2-10}$$

where A is the regression constant from equation (2-9), M_R is the resilient modulus, σ_d is the applied deviator stress, and a and b are material-dependent regression constants.

Majidzadeh et al. (1979) applied these two relationships. They tested specimens by varying the deviator stress and the temperature. The variation in parameter (m) came out to be insignificant. They generalized the results by taking an average value for (m), which represents the all tested samples, and then calculated the normalized value of the parameter (A). The relationship shown in equation (2-10) was analyzed using the normalized (A) value, and both equations came out to be applicable to all samples tested in that research.

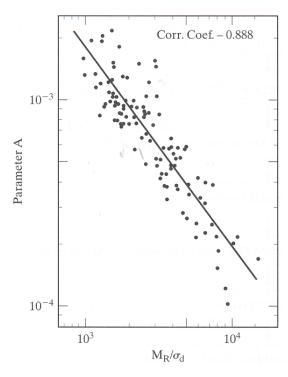


Figure 2-4. Relationship between parameter A and M_R/σ_d , after (Khedr 1986)

3. EXPERIMENTAL PLAN AND TEST SETUP

3.1 Experimental Plan

Loose samples were procured from 16 projects that were constructed within the state of Iowa. A summary of job mix formulas is presented in Appendix A. The mixes were selected to cover a wide range of material properties. The samples included base coarse, intermediate coarse, and surface coarse mixes. Three traffic levels were considered: less than 3 million equivalent single-axle loads (ESALs), 3 to 10 million ESALs, and greater than 10 million ESALs. Two nominal maximum aggregate sixes (NMAS)—12.5 and 19.0 mm—were used, and three binder performance grades (PG 58-25, PG 64-22, and PG 70-28) were represented. The properties of the mixes are presented in Table 3-1.

Table 3-1. Properties of sampled mixes

Project Name	NMAS	Binder	Traffic Level	Designation
1 Toject I vallie	(mm)	PG	Million ESALs	Designation
HWY 330 Base	19.0	64-22	<3	330B
HWY 218, Tripoli	19.0	64-22	<3	218
I-80 Base	19.0	64-22	>10	I80B
I-235 Intermediate	19.0	70-28	>10	235I
6th St. Nevada	12.5	64-22	<3	6N
Dedham	12.5	58-28	<3	Ded
Rose Street	12.5	64-22	<3	Rose
F-52	12.5	58-28	<3	F52
Northwestern Avenue	12.5	64-22	<3	NW
HW 4	12.5	58-28	<3	HW4
HWY 330 Int.	12.5	64-22	3-10	330I
Jewell	12.5	64-22	3-10	Jewell
HWY 330 Surface	12.5	64-22	3-10	330S
I-80 Surface	12.5	64-22	>10	I80S
I-235 Surface	12.5	70-28	>10	235S
Altoona	12.5	64-22	>10	ALT

The samples were compacted using a Pine Superpave gyratory compactor to obtain samples that were 100 mm in diameter and approximately 150 mm in height. All samples were compacted to $7\% \pm 1\%$ air voids. The experimental plan was developed to be able to test the samples under different conditions that might occur in the field. The samples were subjected to five different modes of moisture conditioning: (1) unconditioned without water submersion testing, (2) unconditioned with water submersion testing, (3) moisture saturation with water submersion testing, and (5) moisture saturation with freeze/thaw conditioning without water submersion testing. Five replicates were tested in each condition for each mix. The five conditions were tested under the flow number test scheme. Condition 2 was only tested on 5 of the 16 mixes. It was not

possible to run the dynamic modulus test in the case of water submersion because the test protocol dictates the use of external linear variable differential transformers (LVDTs) on the sides of the specimen. As a result, the dynamic modulus test was performed on unconditioned samples (condition 1) and samples conditioned with one freeze-thaw cycle (condition 4). The test was performed at two different temperatures (4°C and 21°C) and nine frequencies (0.1, 0.3, 0.5, 1.0, 3.0, 5.0, 10.0, 15.0, and 25.0 Hz). The samples used in the dynamic modulus testing were then used in the flow number testing. Ten samples, not five, were tested in condition 4 because the samples were used in conditions 4 and 5 for flow number testing. Ten gyratory-compacted samples 100 mm in diameter and 62.5 mm in height with $7\% \pm 1\%$ air voids. The samples were split into two groups with equal average air voids. One of the groups was used as a control, and the second group was conditioned with one freeze/thaw cycle (condition 4). Table 3-2 summarizes the testing plan, where each X represents a sample tested.

Table 3-2. Samples tested at the different conditions

Test	Condition 1	Condition 2*	Condition 3	Condition 4	Condition 5
Dynamic	XXXXX			XXXXX	
Modulus	AAAAA			XXXXX	
Flow Number	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX
AASHTO T283	XXXXX			XXXXX	

^{*} This condition was applied to five mixtures only.

3.2 Sample Conditioning

The conditioning of the samples was done in accordance to AASHTO T 283, "Resistance of Compacted Bituminous Mixture to Moisture Induced Damage." Specimens were compacted according to section 4.2.3 in AASHTO T 283 and divided into two subsets so that each subset had the same average air voids. The dry subset (control group) deviated from the standard specification as the samples were placed in an environmental chamber rather than being wrapped with plastic or placed in a heavy-duty, leak-proof plastic bag and stored in a water bath at 25°C ± 0.5 °C for two hours \pm ten minutes prior to testing. The conditioning of the conditioned subset specimens was done by placing the samples in a pycnometer with a spacer. Approximately 25 mm of water was placed above the specimen. The specimen was vacuum saturated for five to ten minutes at 13–67 kPa. The specimen was left submerged in water bath for five to ten minutes after vacuum saturating. The mass of the saturated, surface-dry specimen was determined after partial vacuum saturation. Next, the volume of absorbed water was calculated. Finally, the degree of saturation was calculated. If the degree of saturation was between 70% and 80%, testing proceeded. If the degree of saturation was less than 70%, the vacuum saturation procedure was repeated. If saturation was greater than 80%, the specimen was considered damaged and discarded. If the sample required a freeze/thaw cycle, each vacuum saturated specimen was tightly covered with plastic wrap and placed in a plastic bag with approximately 10 ± 0.5 ml of water and sealed. The plastic bags were then placed in a freezer at -18° C $\pm 3^{\circ}$ C

for a minimum of 16 hours. After the freeze/thaw cycle, the final steps were the same for moisture conditioning with or without freeze/thaw cycling. The next step was to place the samples in a water bath at $60^{\circ}\text{C} \pm 1^{\circ}\text{C}$ for 24 ± 1 hour with 25 mm of water above the specimens. The specimens were then removed and placed in a water bath at $25^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ for two hours \pm ten minutes. Approximately 25 mm of water should be above the specimens. Not more than 15 minutes should be required for the water bath to reach $25^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$. If needed, ice could be used to prevent temperature increase. The specimens were then ready for testing.

3.3 Dynamic Modulus Test

The test setup was derived from NCHRP Report 547 (Witczak 2005). The test was performed using a universal servo-hydraulic testing system inside a temperature-controlled environmental chamber that was set to the designated test temperature. The test was a strain-controlled test, in which the strain was maintained at 80 microstrain to be able to capture the linear viscoelastic behavior of the material. The vertical deformation measurements were obtained using four LVDTs with a 100 mm gage length. They were attached to the specimen by aluminum buttons, which were fixed on the specimen surface using epoxy glue. One average strain measurement was obtained from the four LVDTs, and this average strain was then used to control the test. The test setup is shown in Figure 3-1.

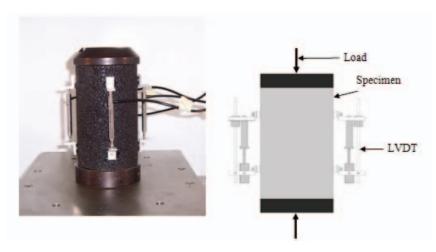


Figure 3-1. Dynamic modulus test setup (NCHRP Report 547)

The test was performed at two different temperatures (4°C and 21°C) and nine frequencies (0.1, 0.3, 0.5, 1.0, 3.0, 5.0, 10.0, 15.0, and 25.0 Hz). At each frequency-temperature combination, the dynamic modulus value and the phase angle were calculated. The concept of time-temperature superposition was applied to the results from these temperatures and frequencies to develop a master curve for each mix. The master curve can be used to predict the modulus at other temperatures and frequencies. The use of more frequencies and less temperatures is more practical because it reduces the testing time.

3.4 Flow Number Test

The testing procedure described herein was derived from NCHRP Report 465 (Witzack et al. 2002) and NCHRP Report 513 (Bonaquist et al. 2003). This testing protocol has been referred to as Protocol W1: Simple Performance Test for Permanent Deformation Based upon Repeated Load Test of Asphalt Concrete Mixtures.

A 100 mm diameter by 150 mm high cylindrical specimen was tested under a repeated haversine compressive stress at a single effective temperature unconfined. A UTM 14P machine was used to conduct the tests with a temperature-controlled testing chamber. The load was applied for a duration of 0.1 sec and a dwell period of 0.9 sec. No design axial stress levels have been stipulated in the NCHRP 465 or 513 protocols. The deviator stress used in testing the 16 mixtures was 600 kPa (87 psi), which is analogous to the load used in the Superpave gyratory compactor. Since no confining pressure was used, the axial stress is the deviator stress stated (600 kPa). The effective test temperature was selected to be 37°C, which is representative of the effective rutting temperature in the state of Iowa. The temperature inside the environmental chamber was checked using a probe inserted in a dummy sample. The strains for these tests were measured directly through the machine's actuator as opposed to affixing axial LVDTs to the side of the specimen is not suitable to the test conditions because of the high deformation levels expected during the test.

Specimens were placed in the testing chamber for a minimum of two hours, as specified in Protocol W1, to ensure that the test temperature was obtained in the test specimens. After the test temperature had been reached, the specimen was centered under the loading platens so as to not place an eccentric load on the specimen. The test was conducted in accordance with the aforementioned parameters. Depending on the test condition designated for the sample, the sample was either placed in water or not. The water in the container was at the designated test temperature. The test setup is shown in Figure 3-2.

Figure 3-2. Flow number test setup

The loading regime was applied to the specimens for a total of 40,000 continuous cycles or until the specimen failed and resulted in excessive tertiary deformation, whichever occurred first. Excessive deformation was considered 100,000 microstrain. The exact length of the test was variable from one mixture to the next because of the different material properties.

3.5 Indirect Tensile Strength Testing

The testing procedure described herein is derived from the AASHTO T 283, "Resistance of Compacted Bituminous Mixture to Moisture Induced Damage." The indirect tensile strength of the dry and conditioned specimens was determined at 25°C. The specimen was placed between two bearing plates in the testing machine such that the load was applied along the diameter of the specimen, as shown in Figure 3-3. A universal testing machine was used to conduct the testing.

Figure 3-3. Indirect tensile strength test setup

The load was applied at a constant rate of movement of the testing machine head of 50 mm per minute. The maximum load was recorded and placed in the equation (3-1) in order to calculate tensile strength.

$$S_t = \frac{2000 \times P}{\pi \times t \times D},\tag{3-1}$$

where S_t = tensile strength (kPa), P = maximum load (N), t = specimen thickness (mm), and D = specimen diameter (mm).

A numerical index or resistance of an HMA mixture to the effects of water is the ratio of the original strength that is retained to that of the moisture conditioned strength.

$$TSR = \frac{S_2}{S_1},\tag{3-2}$$

where TSR = tensile strength ratio, S_2 = average tensile strength of conditioned subset, and S_I = average tensile strength of dry subset.

4. DYNAMIC MODULUS TEST RESULTS AND ANALYSIS

4.1 Approach

The dynamic modulus was performed on two groups of samples: control and moisture-conditioned samples. The dynamic modulus values and phase angles were calculated for the mixes at the different frequency-temperature combinations. The approach of this analysis was to evaluate the change of dynamic modulus and its associated parameters (phase angle, storage modulus, and loss modulus) and see which of these parameters is linked directly to moisture damage. A visual representation of the results is presented by plotting the master curves for the different mixes for both the control and conditioned groups.

4.2 Dynamic Modulus Test Results

The results of the dynamic modulus test and phase angle for both the control and conditioned groups are presented in Appendix B. The E* ratios were then calculated by dividing the dynamic modulus results from the moisture conditioned group by those from the control group (see Table 4-1). The lower the E* ratio, the greater the effect of moisture conditioning on a specific mix. The E* ratios appear to vary with test temperature and frequency. The general trend is that the E* ratio decreases with an increase in temperature and/or a decrease in frequency. This variation provides the impetus for performing a statistical analysis to check the variability in the results. The phase angle ratios are presented in Table 4-2. The increase in the phase angle ratio indicates greater moisture damage. The general trend is that the phase angle values increase with moisture conditioning. This means that the moisture-conditioned samples are more viscous compared to the control samples. The phase angle ratio decreases with the decrease in test frequency and an increase in test temperature.

Table 4-1. E* ratios

Mix Name	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	4	0.97	0.93	1.01	0.89	0.86	0.84	0.79	0.83	0.78
6N	21	1.02	1.00	1.00	0.97	0.94	0.93	0.91	0.88	0.81
218	4	1.04	1.02	1.03	1.02	1.05	1.01	1.01	1.01	1.00
218	21	1.16	1.16	1.14	1.13	1.23	1.13	1.07	1.05	0.94
235I	4	0.90	0.88	0.88	0.87	0.83	0.84	0.84	0.84	0.84
235I	21	0.90	0.90	0.90	0.89	0.87	0.86	0.84	0.85	0.83
235s	4	1.15	1.13	1.14	1.13	1.18	1.12	1.11	1.11	1.09
235s	21	1.21	1.20	1.19	1.19	1.30	1.21	1.17	1.20	1.11
330B	4	0.93	0.92	0.95	0.93	0.96	0.91	0.91	0.93	0.93
330B	21	1.10	1.11	1.12	1.12	1.22	1.16	1.11	1.04	1.04
330I	4	1.07	1.04	1.04	1.03	1.03	1.02	0.99	1.02	1.01
330I	21	1.17	1.17	1.16	1.16	1.15	1.18	1.16	1.14	1.15
330s	4	0.99	0.99	0.98	0.98	0.96	0.94	0.93	0.92	0.89
330s	21	0.85	0.83	0.82	0.82	0.79	0.80	0.84	0.88	0.88
ALT	4	0.99	0.99	0.98	0.97	0.96	0.95	0.95	0.95	0.93
ALT	21	1.11	1.12	1.11	1.10	1.10	1.09	1.09	1.08	1.04
Ded	4	0.90	0.90	0.91	0.92	0.94	0.85	0.88	0.86	0.96
Ded	21	1.12	1.11	1.12	1.11	1.25	1.08	1.05	0.92	0.86
F52	4	1.02	1.02	1.02	1.02	0.98	0.95	0.96	0.92	0.85
F52	21	1.11	1.09	1.07	1.05	1.06	1.02	0.95	0.86	0.81
HW4	4	0.92	0.92	0.91	0.89	0.87	0.87	0.86	0.85	0.89
HW4	21	0.67	0.66	0.66	0.68	0.64	0.71	0.81	0.87	0.90
I80B	4	1.01	1.01	1.02	1.01	1.00	1.01	0.99	0.98	1.00
I80B	21	0.98	1.02	1.03	1.03	1.03	1.04	1.06	1.00	1.01
I80s	4	0.93	0.88	0.91	0.90	0.92	0.86	0.86	0.87	0.83
I80s	21	0.91	0.93	0.93	0.91	0.94	0.87	0.86	0.85	0.79
Jewell	4	1.06	1.03	1.04	1.01	1.06	1.00	0.99	1.00	0.98
Jewell	21	1.20	1.19	1.18	1.18	1.28	1.19	1.17	1.14	1.12
NW	4	0.91	0.89	0.90	0.90	0.92	0.89	0.87	0.88	0.88
NW	21	1.05	1.07	1.07	1.07	1.17	1.09	1.06	1.05	1.04
Rose	4	0.94	0.89	0.88	0.89	0.87	0.84	0.83	0.84	0.79
Rose	21	0.85	0.84	0.84	0.82	0.79	0.75	0.75	0.73	0.69

Table 4-2. Phase angle ratios

Mix Name	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	4	1.83	1.21	1.25	1.21	1.25	1.17	1.13	1.15	1.36
6N	21	1.14	1.12	1.12	1.13	1.13	1.12	1.14	1.15	1.08
218	4	1.19	1.01	1.09	1.07	1.06	1.10	1.06	1.06	1.24
218	21	1.03	1.02	1.02	1.02	0.98	1.01	1.03	1.02	1.00
235I	4	1.26	1.16	1.16	1.14	1.23	1.12	1.19	1.19	1.20
235I	21	1.08	1.09	1.08	1.07	1.04	1.06	1.02	1.05	1.03
235s	4	0.93	0.93	0.93	0.94	0.96	0.99	0.92	0.98	1.03
235s	21	0.99	0.99	1.00	1.00	0.96	1.00	0.96	1.02	0.99
330B	4	0.98	1.09	1.07	1.04	1.04	0.99	1.04	1.12	1.28
330B	21	1.06	1.00	1.00	1.00	0.97	1.00	0.93	1.02	1.00
330I	4	1.23	1.12	1.10	1.10	1.06	1.05	1.06	1.09	1.35
330I	21	1.01	1.00	1.00	1.00	0.97	0.99	0.95	0.99	1.00
330s	4	1.20	1.17	1.21	1.27	1.32	1.28	1.31	1.36	1.53
330s	21	1.11	1.11	1.12	1.14	1.12	1.17	1.13	1.18	1.26
ALT	4	2.25	1.28	1.17	1.13	1.12	1.12	1.16	1.20	1.38
ALT	21	1.05	1.03	1.02	1.03	1.01	1.04	1.05	1.03	1.05
Ded	4	1.12	1.05	1.06	1.03	1.07	0.97	0.96	1.05	1.25
Ded	21	1.02	0.99	0.98	0.99	0.99	1.01	1.00	1.02	1.10
F52	4	1.38	1.10	1.09	1.10	1.13	1.05	1.07	1.07	1.67
F52	21	1.05	1.05	1.07	1.06	1.00	1.05	1.08	1.10	1.05
HW4	4	1.22	1.20	1.15	1.16	1.25	1.11	1.15	1.09	1.09
HW4	21	1.15	1.17	1.21	1.27	1.25	1.32	1.39	1.39	1.45
I80B	4	1.22	1.18	1.12	1.10	1.11	1.09	1.03	1.00	1.03
I80B	21	0.97	0.99	1.01	1.02	1.01	1.00	0.97	0.99	1.04
I80s	4	1.73	1.30	1.28	1.24	1.20	1.16	1.17	1.26	1.50
I80s	21	1.14	1.14	1.13	1.13	1.15	1.12	1.15	1.16	1.19
Jewell	4	1.25	1.17	1.13	1.11	1.10	1.07	1.09	1.10	1.17
Jewell	21	0.97	0.99	0.99	0.99	0.98	0.97	0.98	0.98	0.92
NW	4	1.45	1.35	1.22	1.34	1.34	1.28	1.40	1.59	1.80
NW	21	1.30	1.28	1.26	1.25	1.25	1.25	1.24	1.32	1.26
Rose	4	1.17	1.09	1.11	1.10	1.15	1.06	1.03	1.06	1.26
Rose	21	1.04	1.02	1.03	1.03	1.00	1.01	1.00	0.97	0.93

4.3 Statistical Analysis

A statistical analysis was performed to test the hypothesis that the results at different temperature-frequency combinations are statistically different. A pairwise comparison using a level of significance (α) of 0.05 was performed between the ratios for the 16 mixes at each of the temperature-frequency combinations to those at the other frequency-temperature combinations. The results of this statistical analysis are presented in Table 4-3 and show that there are statistical differences between the results. This means that the temperature and the loading frequency are significant factors and that they affect the extent of moisture damage to which the mix is subjected. The same analysis was performed on the phase angle ratio (see Table 4-4). The analysis also showed that many of the temperature-frequency combinations are statistically different from the other combinations.

Figures 4-1 and 4-2 show the E* ratio distribution for all the mixes with respect to temperature and frequency, respectively. It appears from Figure 4-1 that the range of ratios at 21°C is larger than that at 4°C. The Tukey-Kramer all pairwise comparison method was used to test whether the mixes are statistically different from each other. This was used to group the mixes that show no statistical difference from each other. The results of the comparison are presented in Tables 4-5 and 4-6 for the E* ratio and phase angle ratio results, respectively. Ranking the mixes at the different temperature-frequency combinations using E* ratios is presented in Table 4-7, while combinations using phase angle ratios are presented in Table 4-8.

Table 4-3. Statistical comparison between the different temperature-frequency combinations for E* ratios*

Temp- Freq.	4°C- 15 Hz	4°C- 10 Hz	4°C- 5 Hz	4°C- 3 Hz	4°C- 1 Hz	4°C- 0.5 Hz	4°C- 0.3 Hz	4°C- 0.1 Hz	21°C- 25 Hz	21°C- 15 Hz	21°C- 10 Hz	21°C- 5 Hz	21°C- 3 Hz	21°C- 1 Hz	21°C- 0.5 Hz	21°C- 0.3 Hz	21°C- 0.1 Hz
4°C- 25 Hz	0.0011	0.1652	0.0018	0.0591	0.0001	0.0001	0.0001	0.0008	0.1919	0.2087	0.2519	0.336	0.1698	0.5000	0.7161	0.6452	0.1379
4°C- 15 Hz		0.0958	0.2506	0.7577	0.0001	0.0001	0.0002	0.0039	0.0722	0.0813	0.1013	0.1374	0.0837	0.2366	0.3186	0.8034	0.3511
4°C- 10 Hz			0.0631	0.5643	0.0003	0.0004	0.0002	0.0025	0.1113	0.1244	0.1529	0.2118	0.1154	0.3482	0.5019	0.8812	0.2143
4°C- 5 Hz				0.8056	0.0001	0.0001	0.0001	0.0038	0.0456	0.0511	0.0645	0.0893	0.0587	0.1711	0.2287	0.6528	0.4506
4°C- 3 Hz					0.0006	0.0001	0.0001	0.0009	0.0339	0.0375	0.0490	0.0673	0.0385	0.1369	0.1868	0.6553	0.3667
4°C- 1 Hz						0.0846	0.1321	0.1866	0.0075	0.0080	0.0104	0.0133	0.0145	0.0290	0.0244	0.0769	0.7566
4°C- 0.5 Hz							0.6091	0.4711	0.0039	0.0042	0.0055	0.0069	0.0084	0.0164	0.0127	0.0452	0.5411
4°C- 0.3 Hz								0.3351	0.0035	0.0038	0.0049	0.0062	0.0085	0.0153	0.0108	0.0350	0.5749
4°C- 0.1 Hz									0.0027	0.0027	0.0031	0.0033	0.0041	0.0070	0.0026	0.0107	0.2949
21°C- 25 Hz										0.8845	0.4546	0.1230	0.2473	0.1659	0.1010	0.0510	0.0175
21°C- 15 Hz											0.1380	0.0186	0.1997	0.1107	0.0810	0.0467	0.0154
21°C- 10 Hz												0.0362	0.1309	0.1826	0.1069	0.0608	0.0183
21°C- 5 Hz													0.0535	0.3466	0.1437	0.0731	0.0190
21°C- 3 Hz														0.0155	0.0337	0.0300	0.0123
21°C- 1 Hz															0.2209	0.0929	0.0181
21°C- 0.5 Hz																0.0817	0.0055
21°C- 0.3 Hz																	0.0047

^{*}Numbers in bold are statistically significant at α =0.05

 $Table \ 4-4. \ Statistical \ comparison \ between \ the \ different \ temperature-frequency \ combinations \ for \ E^* \ ratios^*$

Temp- Freq.	4°C- 15 Hz	4°C- 10 Hz	4°C- 5 Hz	4°C- 3 Hz	4°C- 1 Hz	4°C- 0.5 Hz	4°C- 0.3 Hz	4°C- 0.1 Hz	21°C- 25 Hz	21°C- 15 Hz	21°C- 10 Hz	21°C- 5 Hz	21°C- 3 Hz	21°C- 1 Hz	21°C- 0.5 Hz	21°C- 0.3 Hz	21°C- 0.1 Hz
4°C- 25 Hz	0.0152	0.0128	0.0151	0.0307	0.0078	0.0102	0.0305	0.8363	0.0043	0.0036	0.0044	0.0052	0.0028	0.0056	0.0039	0.0094	0.0105
4°C- 15 Hz		0.2295	0.1674	0.9498	0.0197	0.0539	0.9251	0.0023	0.0012	0.0004	0.0009	0.0022	0.0002	0.0046	0.0059	0.0375	0.0563
4°C- 10 Hz			0.7255	0.3183	0.0314	0.2543	0.6224	0.0012	0.0023	0.0006	0.0015	0.0048	0.0004	0.0116	0.0151	0.1055	0.1363
4°C- 5 Hz				0.0680	0.0046	0.1146	0.3951	0.0004	0.0007	0.0001	0.0004	0.0020	0.0001	0.0060	0.0117	0.0806	0.1259
4°C- 3 Hz					0.0015	0.0138	0.9599	0.0020	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0008	0.0090	0.0233
4°C- 1 Hz						0.4392	0.0545	0.0002	0.0704	0.0150	0.0313	0.0919	0.0101	0.1352	0.1529	0.5820	0.5869
4°C- 0.5 Hz							0.0209	0.0001	0.0379	0.0117	0.0272	0.0657	0.0091	0.0802	0.0958	0.3534	0.3936
4°C- 0.3 Hz								0.0002	0.0042	0.0029	0.0077	0.0175	0.0033	0.0206	0.0291	0.0726	0.1019
4°C- 0.1 Hz									0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002	0.0003	0.0007
21°C- 25 Hz										0.1762	0.5805	0.9067	0.1152	0.9632	0.7744	0.3241	0.5569
21°C- 15 Hz											0.4156	0.2418	0.1907	0.4685	0.9118	0.1200	0.3477
21°C- 10 Hz												0.1984	0.0563	0.5680	0.9324	0.1200	0.3816
21°C- 5 Hz													0.0010	0.8996	0.5501	0.1420	0.4630
21°C- 3 Hz														0.0109	0.2717	0.0045	0.0745
21°C- 1 Hz															0.4995	0.0389	0.3265
21°C- 0.5 Hz																0.0158	0.1850
21°C- 0.3 Hz																	0.8462

^{*}Numbers in bold are statistically significant at α =0.05

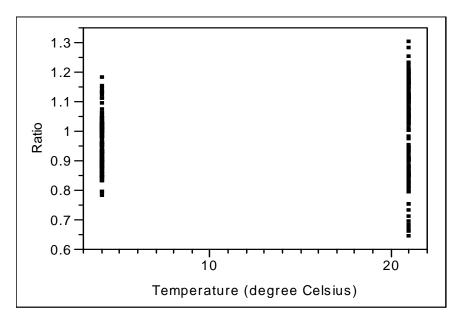


Figure 4-1. Distribution of E* ratios at different temperatures

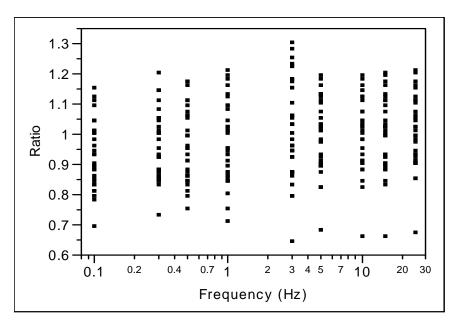


Figure 4-2. Distribution of E* ratios at different frequencies

Table 4-5. All pairwise comparison for E* ratios*

Mix			Leve	el			Mean
235s	A						1.1633
Jewell	A	В					1.1011
330I	A	В					1.0939
218		В	C				1.0667
ALT		В	C				1.0283
330B		В	C				1.0217
I80B		В	C				1.0128
F52			C	D			0.9867
Ded			C	D			0.9856
NW			C	D			0.9839
6N				D	E		0.9089
330s					E	F	0.8939
I80s					E	F	0.8861
235I					E	F	0.8644
Rose					E	F	0.8239
HW4						F	0.8100

^{*}Levels not connected by same letter are significantly different.

Table 4-6. All pairwise comparison for phase angle ratios*

Mix			Level			Mean
235s	Α					0.9733
330B	A	В				1.0350
Ded	Α	В				1.0367
I80B	Α	В				1.0489
NW	Α	В				1.0533
218	Α	В				1.0561
Jewell	Α	В				1.0589
330I	Α	В	C			1.0594
F52		В	C	D		1.1206
235I		В	C	D		1.1206
ALT		В	C	D		1.1733
6N			C	D	E	1.2050
330s				D	E	1.2217
HW4				D	E	1.2233
I80s				D	E	1.2306
Rose					Е	1.3433

^{*}Levels not connected by same letter are significantly different.

Table 4-7. Ranking of mixes based on E* ratio

Mix Name	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	4	9	9	7	13	15	15	16	16	16
218	4	4	4	4	3	3	3	2	3	4
235I	4	16	16	16	16	16	16	14	14	13
235s	4	1	1	1	1	1	1	1	1	1
330B	4	12	10	10	9	7	9	9	7	7
330I	4	2	2	3	2	4	2	5	2	2
330s	4	8	7	8	7	8	8	8	8	9
ALT	4	7	8	9	8	9	7	7	6	8
Ded	4	15	12	12	10	10	13	10	12	6
F52	4	5	5	5	4	6	6	6	9	12
HW4	4	13	11	13	14	14	11	13	13	10
I80B	4	6	6	6	5	5	4	3	5	3
I80s	4	11	15	11	11	12	12	12	11	14
Jewell	4	3	3	2	6	2	5	4	4	5
NW	4	14	13	14	12	11	10	11	10	11
Rose	4	10	14	15	15	13	14	15	15	15
6N	21	10	11	11	11	12	11	11	11	14
218	21	4	4	4	4	4	5	6	5	8
235I	21	13	13	13	13	13	13	13	14	12
235s	21	1	1	1	1	1	1	1	1	3
330B	21	8	7	5	5	5	4	4	7	6
330I	21	3	3	3	3	7	3	3	3	1
330s	21	15	15	15	15	14	14	14	10	10
ALT	21	6	5	7	7	8	6	5	4	4
Ded	21	5	6	6	6	3	8	9	9	11
F52	21	7	8	8	9	9	10	10	13	13
HW4	21	16	16	16	16	16	16	15	12	9
I80B	21	11	10	10	10	10	9	8	8	7
I80s	21	12	12	12	12	11	12	12	15	15
Jewell	21	2	2	2	2	2	2	2	2	2
NW	21	9	9	9	8	6	7	7	6	5
Rose	21	14	14	14	14	15	15	16	16	16

Table 4-8. Ranking of mixes based on phase angle ratio

Mix Name	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	4	15	13	15	13	14	14	10	11	11
218	4	5	2	4	4	3	9	7	5	6
235I	4	11	8	11	11	12	11	14	12	5
235s	4	1	1	1	1	1	2	1	1	1
330B	4	2	4	3	3	2	3	5	10	9
330I	4	9	7	6	7	4	5	6	8	10
330s	4	6	9	13	15	15	15	15	15	14
ALT	4	16	14	12	10	8	12	12	13	12
Ded	4	3	3	2	2	5	1	2	3	7
F52	4	12	6	5	6	9	4	8	6	15
HW4	4	7	12	10	12	13	10	11	7	3
I80B	4	8	11	8	5	7	8	4	2	2
I80s	4	14	15	16	14	11	13	13	14	13
Jewell	4	4	5	7	8	10	6	3	4	8
NW	4	10	10	9	9	6	7	9	9	4
Rose	4	13	16	14	16	16	16	16	16	16
6N	21	13	13	12	12	13	12	13	12	11
218	21	6	7	8	7	5	6	9	6	4
235I	21	11	11	11	11	11	11	8	10	7
235s	21	3	4	5	5	1	5	3	5	3
330B	21	10	5	3	4	2	4	1	7	6
330I	21	4	6	4	3	3	2	2	3	5
330s	21	12	12	13	14	12	14	12	14	15
ALT	21	13	13	12	12	13	12	13	12	11
Ded	21	8	9	7	8	9	9	10	9	9
F52	21	5	2	1	2	6	7	6	8	12
HW4	21	9	10	10	10	8	10	11	11	10
I80B	21	15	15	15	16	15	16	16	16	16
I80s	21	2	1	6	6	10	3	4	4	8
Jewell	21	14	14	14	13	14	13	14	13	13
NW	21	7	8	9	9	7	8	7	1	2
Rose	21	1	3	2	1	4	1	5	2	1

4.4 Master Curves

The data from the dynamic modulus test was used to plot master curves for the different mixes. For each mix, the master curve for the control and moisture-conditioned results are plot together at a reference temperature of 21°C. Figures 4-3 through 4-16 present the master curves for the 16 mixes. It can be seen from the master curves that at low temperature and/or high frequencies, the moduli for the control and moisture-conditioned samples are very close for all the mixtures, with a possible increase in the dynamic modulus values for the moisture-conditioned group. The values of the moduli start to be different when the temperature is increased and/or the frequency

is decreased. The magnitude of the difference changes from one mixture to the other, depending on the moisture susceptibility of the mixes. This means that developing the master curves provides a good means to visualize the effect of moisture on the mixes over the full range of the operating frequencies and temperatures. Only 1 of the 16 mixtures (330S) did not follow this trend—the moisture-conditioned sample's modulus increased at higher temperatures and/or lower frequencies.

For the mixes studied under this project, the area under the master curve was calculated to quantify the difference caused by moisture conditioning. Based on the previous discussion, the area under the master curve had to be split into two zones. The first zone is for frequencies lower than 10 Hz at the reference temperature, which represents the high-temperature—low-frequency zone. The second zone is for frequencies higher than 10 Hz, which represents the low-temperature—high-frequency zone. The results are shown in Table 4-9. The results show that splitting the area under the master curve can be used to provide a good distinction between the different mixes when it comes to moisture susceptibility. The distinction is very clear at the high-temperature—low-frequency zone.

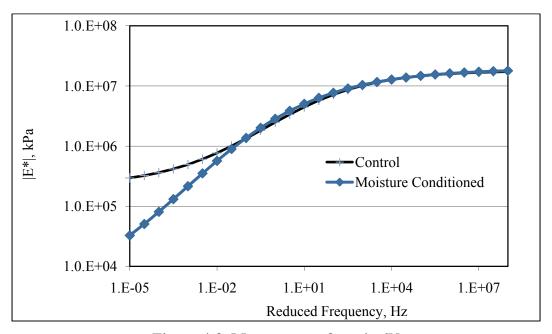


Figure 4-3. Master curve for mix 6N

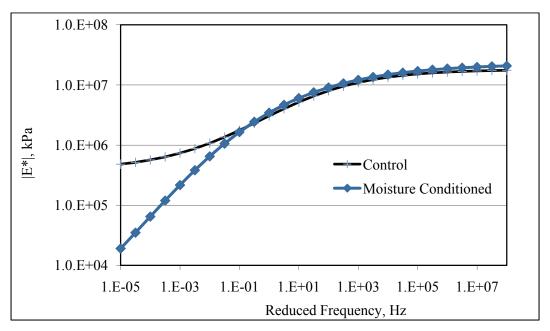


Figure 4-4. Master curve for mix 218

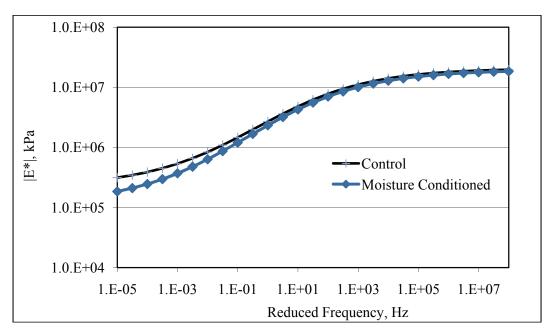


Figure 4-5. Master curve for mix 235I

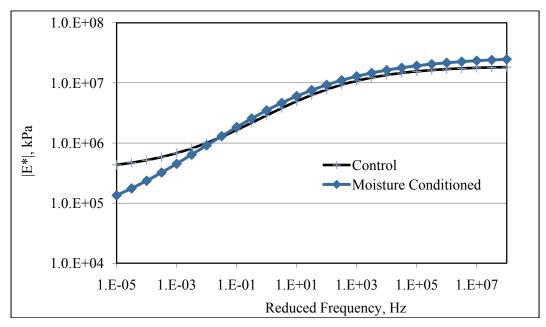


Figure 4-6. Master curve for mix 235S

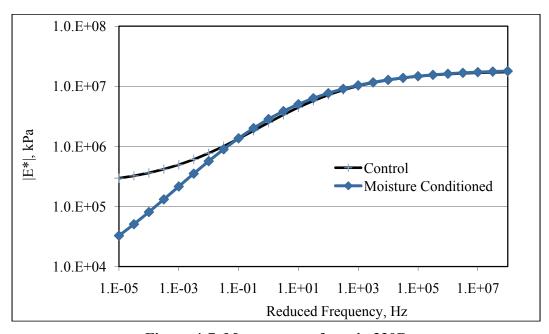


Figure 4-7. Master curve for mix 330B

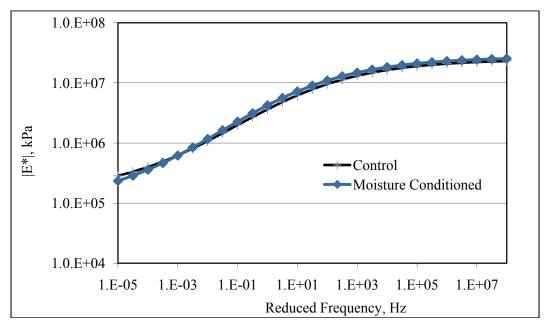


Figure 4-8. Master curve for mix 330I

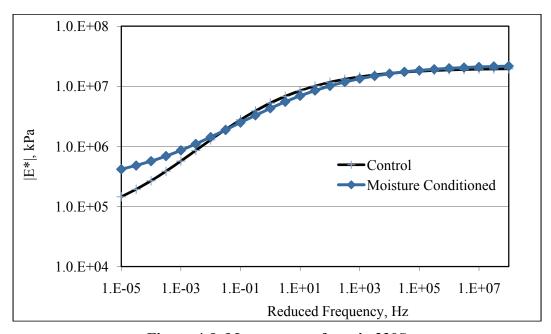


Figure 4-9. Master curve for mix 330S

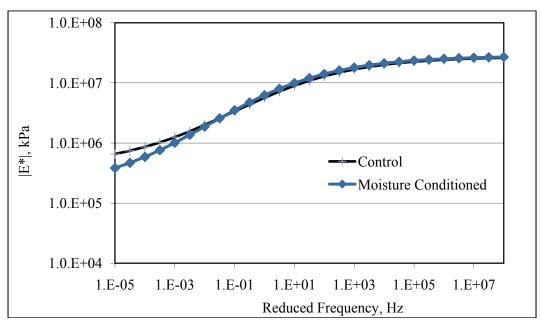


Figure 4-10. Master curve for mix ALT

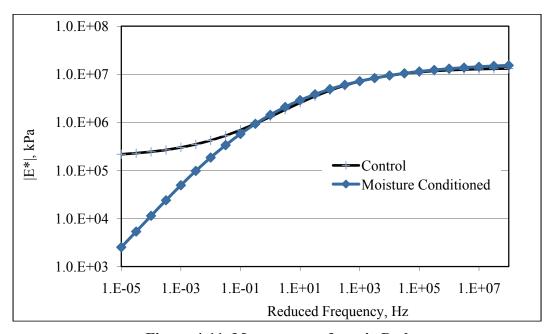


Figure 4-11. Master curve for mix Ded

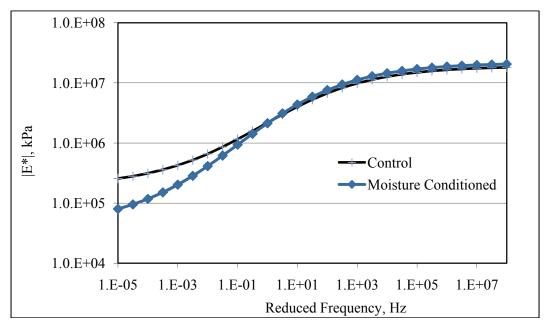


Figure 4-12. Master curve for mix F52

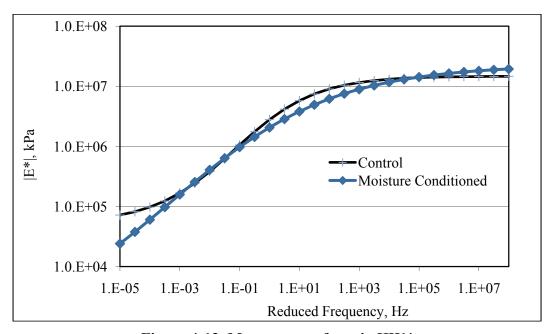


Figure 4-13. Master curve for mix HW4

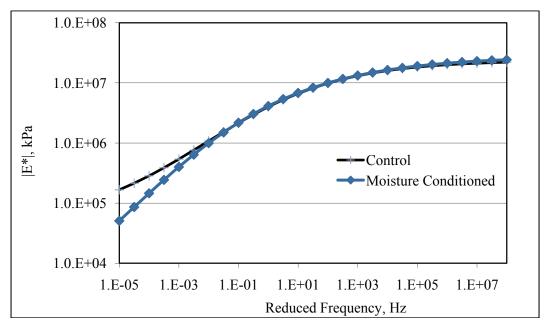


Figure 4-14. Master curve for mix I80B

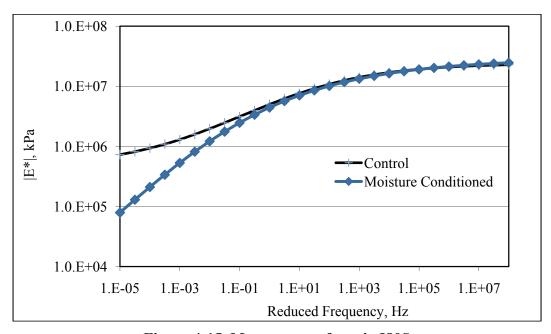


Figure 4-15. Master curve for mix I80S

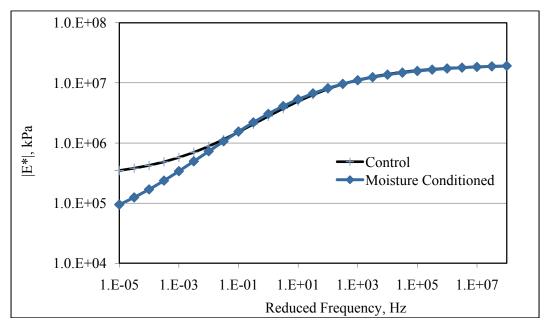


Figure 4-16. Master curve for mix NW

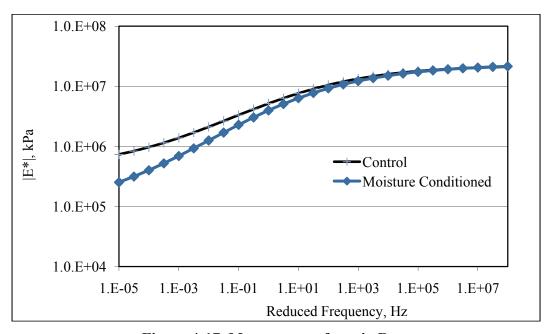


Figure 4-17. Master curve for mix Rose

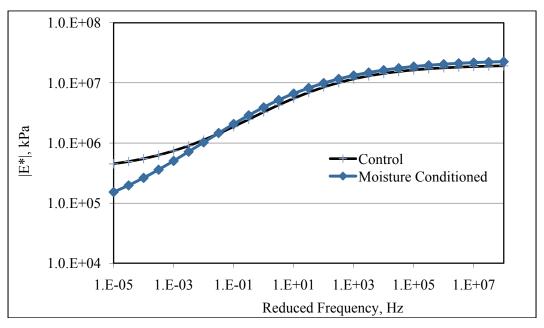


Figure 4-18. Master curve for mix Jewell

Table 4-9. Area under the master curve (GPa)

Mix	High	temperature-l	ow freque	ency	Low temperature-high frequency						
Name	Control	Conditioned	Diff.	Ratio	Control	Conditioned	Diff.	Ratio			
6N	21.36	17.13	4.24	0.80	171.93	203.46	-31.53	1.18			
218	22.60	20.79	1.81	0.92	191.39	217.65	-26.25	1.14			
235I	19.20	15.97	3.23	0.83	204.55	188.96	15.59	0.92			
235s	21.22	22.73	-1.51	1.07	195.33	246.01	-50.69	1.26			
330B	17.75	17.43	0.33	0.98	183.17	187.41	-4.25	1.02			
330I	24.87	28.08	-3.21	1.13	240.96	267.49	-26.53	1.11			
330s	32.76	29.96	2.80	0.91	230.22	234.06	-3.84	1.02			
ALT	40.29	41.41	-1.12	1.03	288.35	302.73	-14.37	1.05			
Ded	9.87	8.62	1.25	0.87	135.57	145.16	-9.60	1.07			
F52	15.60	13.92	1.68	0.89	185.98	211.12	-25.14	1.14			
HW4	17.31	12.79	4.52	0.74	178.18	182.19	-4.01	1.02			
I80B	25.98	25.59	0.39	0.98	233.98	246.23	-12.25	1.05			
I80s	36.84	28.07	8.77	0.76	246.28	247.59	-1.31	1.01			
Jewell	23.77	25.41	-1.64	1.07	206.92	238.67	-31.74	1.15			
NW	19.99	19.48	0.50	0.97	201.45	200.64	0.81	1.00			
Rose	38.12	26.75	11.37	0.70	230.32	222.73	7.59	0.97			

4.5 Storage and Loss Moduli

The dynamic modulus and phase angle were used to calculate the storage and loss moduli for all the mixes. The storage modulus ratio is the storage modulus of the control mix divided by that of the moisture conditioned mix. Table 4-10 presents the storage modulus ratios for all the

temperature-frequency combinations. The same was done for the loss modulus, and the results for the loss modulus ratios are presented in Table 4-11. The results of the storage modulus ratios show that although the ratios have a trend within the same mix, there is no specific trend between the mixes. The ratios are sometimes higher than one and sometimes lower, and this result makes these values inconclusive when it comes to the effect on the mix performance. For the case of the loss modulus ratios, the results do not have a specific trend within the mixes.

Table 4-10. Storage modulus ratios

Mix Name	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	4	0.96	0.92	1.01	0.89	0.85	0.84	0.78	0.82	0.75
6N	21	1.02	0.99	0.98	0.95	0.92	0.91	0.88	0.84	0.78
218	4	1.04	1.02	1.03	1.02	1.05	1.01	1.01	1.00	0.98
218	21	1.16	1.16	1.13	1.13	1.23	1.13	1.06	1.04	0.94
235I	4	0.90	0.88	0.87	0.86	0.82	0.83	0.83	0.83	0.82
235I	21	0.90	0.89	0.89	0.88	0.86	0.84	0.84	0.84	0.82
235s	4	1.15	1.13	1.14	1.13	1.18	1.13	1.11	1.11	1.09
235s	21	1.21	1.21	1.19	1.19	1.31	1.21	1.19	1.19	1.11
330B	4	0.93	0.92	0.95	0.93	0.96	0.91	0.91	0.92	0.91
330B	21	1.10	1.11	1.12	1.12	1.23	1.16	1.14	1.03	1.04
330I	4	1.07	1.03	1.04	1.03	1.02	1.02	0.99	1.02	0.99
330I	21	1.17	1.17	1.16	1.16	1.15	1.18	1.17	1.14	1.15
330s	4	0.99	0.99	0.98	0.97	0.96	0.93	0.92	0.91	0.87
330s	21	0.84	0.82	0.81	0.81	0.78	0.79	0.83	0.85	0.84
ALT	4	0.99	0.98	0.98	0.97	0.96	0.95	0.95	0.94	0.91
ALT	21	1.11	1.11	1.11	1.10	1.10	1.08	1.08	1.07	1.02
Ded	4	0.90	0.90	0.91	0.92	0.93	0.85	0.88	0.86	0.90
Ded	21	1.12	1.12	1.12	1.11	1.25	1.07	1.05	0.91	0.81
F52	4	1.01	1.01	1.02	1.02	0.97	0.95	0.96	0.91	0.73
F52	21	1.10	1.08	1.06	1.04	1.05	1.01	0.92	0.82	0.80
HW4	4	0.92	0.91	0.90	0.89	0.86	0.86	0.85	0.84	0.87
HW4	21	0.66	0.65	0.65	0.65	0.61	0.67	0.74	0.79	0.79
I80B	4	1.01	1.01	1.02	1.01	1.00	1.00	0.99	0.98	1.00
I80B	21	0.98	1.03	1.03	1.03	1.03	1.04	1.07	1.00	0.99
I80s	4	0.93	0.88	0.91	0.89	0.91	0.86	0.86	0.86	0.81
I80s	21	0.90	0.92	0.92	0.90	0.93	0.86	0.83	0.82	0.75
Jewell	4	0.91	0.89	0.89	0.89	0.92	0.88	0.86	0.87	0.86
Jewell	21	1.06	1.07	1.07	1.07	1.18	1.10	1.07	1.06	1.08
NW	4	0.94	0.88	0.88	0.89	0.86	0.84	0.82	0.83	0.77
NW	21	0.84	0.83	0.83	0.81	0.77	0.73	0.72	0.69	0.65
Rose	4	1.05	1.03	1.04	1.00	1.06	1.00	0.99	1.00	0.96
Rose	21	1.19	1.19	1.17	1.17	1.28	1.19	1.17	1.15	1.16

Table 4-11. Loss modulus ratios

Mix Name	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	4	1.77	1.12	1.26	1.08	1.07	0.98	0.89	0.95	1.05
6N	21	1.16	1.12	1.11	1.08	1.05	1.03	1.02	0.99	0.86
218	4	1.24	1.04	1.12	1.09	1.12	1.11	1.07	1.07	1.22
218	21	1.20	1.18	1.16	1.15	1.20	1.14	1.10	1.07	0.94
235I	4	1.13	1.02	1.01	0.99	1.02	0.93	1.00	1.00	1.00
235I	21	0.98	0.97	0.97	0.95	0.91	0.90	0.86	0.89	0.85
235s	4	1.06	1.05	1.06	1.06	1.13	1.11	1.02	1.08	1.13
235s	21	1.20	1.19	1.20	1.19	1.25	1.22	1.13	1.22	1.10
330B	4	0.91	1.00	1.02	0.97	1.00	0.90	0.95	1.03	1.19
330B	21	1.16	1.11	1.12	1.12	1.19	1.16	1.04	1.06	1.04
330I	4	1.31	1.16	1.14	1.13	1.09	1.07	1.05	1.12	1.36
330I	21	1.18	1.17	1.16	1.16	1.11	1.16	1.10	1.12	1.15
330s	4	1.19	1.15	1.19	1.24	1.27	1.20	1.21	1.25	1.36
330s	21	0.94	0.91	0.92	0.93	0.88	0.93	0.94	1.03	1.09
ALT	4	2.23	1.26	1.14	1.09	1.07	1.07	1.10	1.14	1.27
ALT	21	1.16	1.15	1.14	1.13	1.11	1.14	1.15	1.11	1.08
Ded	4	1.01	0.95	0.96	0.95	1.00	0.82	0.85	0.90	1.17
Ded	21	1.14	1.10	1.10	1.10	1.24	1.09	1.05	0.94	0.92
F52	4	1.40	1.12	1.11	1.12	1.11	1.00	1.03	0.98	1.34
F52	21	1.16	1.14	1.14	1.10	1.06	1.07	1.02	0.93	0.85
HW4	4	1.12	1.10	1.05	1.04	1.08	0.96	0.99	0.93	0.96
HW4	21	0.77	0.77	0.80	0.85	0.79	0.92	1.09	1.18	1.25
I80B	4	1.23	1.20	1.14	1.11	1.12	1.09	1.02	0.97	1.04
I80B	21	0.96	1.01	1.04	1.05	1.04	1.04	1.02	0.99	1.05
I80s	4	1.61	1.14	1.16	1.11	1.10	1.00	1.01	1.09	1.24
I80s	21	1.03	1.06	1.05	1.02	1.08	0.98	0.98	0.97	0.93
Jewell	4	1.14	1.04	1.01	1.00	1.01	0.95	0.95	0.96	1.02
Jewell	21	1.02	1.05	1.05	1.05	1.15	1.06	1.04	1.03	0.97
NW	4	1.36	1.19	1.07	1.19	1.16	1.08	1.16	1.33	1.41
NW	21	1.10	1.07	1.06	1.02	0.97	0.93	0.92	0.95	0.85
Rose	4	1.24	1.13	1.16	1.11	1.22	1.06	1.02	1.06	1.23
Rose	21	1.24	1.22	1.21	1.21	1.28	1.21	1.17	1.11	1.05

4.6 Comparison between E* Ratio and Master Curve

A paired t-test was used to compare the significance of the difference between the dynamic modulus results of the conditioned and the unconditioned group. A similar comparison was done to compare the difference between the master curves of both groups. The results of both comparisons are presented in Table 4-12, with a level of significance (α) = 0.05. The results show that the two methods yield different conclusion.

Table 4-12. Statistical comparisons for E* and master curves

Mix	Dy	vnamic Modulus	-	Master Curve
Name	α	Indication	α	Indication
6N	0.0009	Statistically different	0.0075	Statistically different
218	0.0001	Statistically different	0.0006	Statistically different
235I	<0.0001	Statistically different	<0.0001	Statistically different
235s	<0.0001	Statistically different	<0.0001	Statistically different
330B	0.2910	Statistically the Same	0.0225	Statistically the Same
330I	< 0.0001	Statistically different	< 0.0001	Statistically different
330s	<0.0001	Statistically different	0.8558	Statistically the Same
ALT	0.7355	Statistically the Same	< 0.0001	Statistically different
Ded	0.0618	Statistically the Same	0.0216	Statistically different
F52	0.8781	Statistically the Same	0.0003	Statistically different
HW4	<0.0001	Statistically different	0.9622	Statistically the Same
I80B	0.0124	Statistically the Same	0.0032	Statistically different
I80s	<0.0001	Statistically different	0.0666	Statistically the Same
Jewell	<0.0001	Statistically different	<0.0001	Statistically different
NW	0.0208	Statistically different	0.2803	Statistically the Same
Rose	<0.0001	Statistically different	<0.0001	Statistically different

4.7 Dynamic Modulus Test Conclusions

The dynamic modulus ratio gives a good evaluation for the moisture susceptibility of the mixes. It provides a distinction between the mixes, and the results can be used in modeling the mix performance. The E* ratio results are dependent on the testing conditions (temperature and frequency). This means that the results from the dynamic modulus test need to be coupled with some evaluation tool related to the expected in situ conditions of the pavement. This means that simulation is necessary in this case. This can be done either by modeling or by simulating the results in the MEPDG. Another easy approach that can be used is to plot the master curve of the control and conditioned groups and then compare the results to have a visual representation of the effect of moisture on the various working conditions. The area under the master curve can be used to quantify the effect of moisture damage provided that a range of frequencies be selected to reflect the expected site conditions for the pavement. The phase angle ratios show that the materials tend to be more viscous with moisture conditioning. The storage and loss moduli ratios are not recommended as tools to evaluate moisture damage because of the scatter in the data and the mixed results.

5. FLOW NUMBER TEST RESULTS AND ANALYSIS

5.1 Test Results

In this chapter, the flow number results are presented and discussed. As mentioned earlier in the experimental plan, the test followed the NCHRP Report 465 (Witczak et al. 2002) and NCHRP Report 513 (Bonaquist et al. 2003) procedure and calculation method. The calculation method was discussed in the literature review. The flow number test is known for its variability. The test is also known to be a good representation of the field's loading conditions. Good simulation of the field loading conditions was the reason for including this test in this study. Several outputs, other than the flow number, can be calculated from this test. The number of cycles at which the test stops, the total strain at the end of the test, the flow number, and the strain at the flow number are general outputs that can be calculated from this test. These results are shown in Tables 5-1 through 5-5. By looking at the results, the following can be concluded. The number of cycles at which the test ends is not a reliable measure because it occurs either by the specimen failure or by reaching the machine test limit, which is 40,000 cycles. The strain at failure is constant when the sample reaches failure. The flow number is the main output of this test, and it can be seen that this output has very high variability. The same is true for the strain at flow number

The previous discussion leads to the need to have a different analysis method for the test. Two approaches were incorporated in this study. The first approach was to have a designated strain level and to get the corresponding number of cycles. A strain level of 30,000 microstrain was selected for this purpose. The second approach was to apply the Ohio State Model on the test results and see if the parameters *A* and *m* are affected by moisture conditioning or not. Parameter *m* was primarily taken into consideration because this parameter is a function of the material properties as discussed in the literature review.

Table 5-1. Flow number results for the control samples

Mix		Cycles to	Strain at failure	Flow Number	Strain at FN	Cycles at 30,000	A	m
MIX		Failure	(microstrain)	(FN)	(microstrain)	microstrain	A	m
6N	Mean	10482	100158	1761	10109.5	6778	1.96E-04	0.5515
6N	Std	6829	113	1137	662.4	4553	3.40E-05	0.0815
6N	CoV (%)	65.1	0.1	64.6	6.6	67.2	17.4	14.8
218	Mean	2936	100713	534	10046.8	1709	1.62E-04	0.6571
218	Std	620	1086	118	1205.8	376	1.44E-05	0.0182
218	CoV (%)	21.1	1.1	22.1	12.0	22.0	8.9	2.8
235I	Mean	9828	100103	2522	15799.7	5648	2.71E-04	0.5182
235I	Std	1395	43	474	1142.7	882	6.13E-05	0.0158
235I	CoV (%)	14.2	0.0	18.8	7.2	15.6	22.6	3.1
235S	Mean	37063	72736	14840	15164.5	28798	1.58E-04	0.4710
235S	Std	4448	28004	4645	1318.3	6442	1.95E-05	0.0066
235S	CoV (%)	12.0	38.5	31.3	8.7	22.4	12.3	1.4
330B	Mean	1337	102026	248	10413.7	760	2.08E-04	0.7088
330B	Std	157	964	48	1385.3	107	2.05E-05	0.0073
330B	CoV (%)	11.7	0.9	19.2	13.3	14.1	9.8	1.0
330I	Mean	4033	100375	876	10038.9	2719	1.64E-04	0.6037
330I	Std	238	76	104	1276.7	179	1.89E-05	0.0081
330I	CoV (%)	5.9	0.1	11.9	12.7	6.6	11.5	1.3
330S	Mean	31353	53670	19533	12968.3	28392	1.20E-04	0.4918
330S	Std	11892	43193	15275	1840.9	14644	2.05E-05	0.0380
330S	CoV (%)	37.9	80.5	78.2	14.2	51.6	17.1	7.7
Alt	Mean	34361	48319	12990	8988.1	31893	1.58E-04	0.4326
Alt	Std	7922	47323	6881	726.5	11168	3.32E-05	0.0181
Alt	CoV (%)	23.1	97.9	53.0	8.1	35.0	21.0	4.2
Ded	Mean	583	101831	206	30704.3	317	3.24E-04	0.8072
Ded	Std	161	1525	154	38352.8	98	1.50E-04	0.1856
Ded	CoV (%)	27.6	1.5	75.0	124.9	30.8	46.2	23.0
F52	Mean	1191	102520	290	9838.8	855	2.39E-04	0.6593
F52	Std	311	1292	88	847.8	217	1.64E-05	0.0204
F52	CoV (%)	26.1	1.3	30.5	8.6	25.4	6.9	3.1
HW4	Mean	8485	101288	1941	11437.2	6062	2.69E-04	0.6229
HW4	Std	11163	1517	2461	941.8	8134	9.72E-05	0.1248
HW4	CoV (%)	131.6	1.5	126.8	8.2	134.2	36.1	20.0
I80B	Mean	4780	100298	963	9372.0	3191	1.27E-04	0.6248
I80B	Std	599	146	224	1103.6	428	1.24E-05	0.0197
I80B	CoV (%)	12.5	0.1	23.3	11.8	13.4	9.8	3.2

Table 5-1. (continued)

Mix		Cycles to Failure	Strain at failure (microstrain)	Flow Number (FN)	Strain at FN (microstrain)	Cycles at 30,000 microstrain	A	m
180S	Mean	30645	48972	10912	9866.9	28519	4.17E-04	0.3883
I80S	Std	12830	46700	13892	4183.0	15730	4.43E-04	0.0871
I80S	CoV (%)	41.9	95.4	127.3	42.4	55.2	106.1	22.4
Jewell	Mean	5484	100171	1515	16423.7	3135	3.35E-04	0.5307
Jewell	Std	1048	61	393	2316.0	672	6.93E-05	0.0241
Jewell	CoV (%)	19.1	0.1	25.9	14.1	21.4	20.7	4.5
NW	Mean	3211	100293	701	11935.1	1930	2.26E-04	0.6048
NW	Std	627	131	193	1206.5	422	9.91E-06	0.0202
NW	CoV (%)	19.5	0.1	27.6	10.1	21.9	4.4	3.3
Rose	Mean	34169	45509	5640	6748.6	30984	1.07E-04	0.4629
Rose	Std	7984	52628	3488	5326.6	12334	3.07E-05	0.0734
Rose	CoV (%)	23.4	115.6	61.9	78.9	39.8	28.7	15.9

Table 5-2. Flow number results for the water-conditioned samples tested under water

Mix		Cycles to Failure	Strain at failure (microstrain)	Flow Number (FN)	Strain at FN (microstrain)	Cycles at 30,000 microstrain	A	m
6N	Mean	1733	100601	539	18394.4	971	6.44E-04	0.5348
6N	Std	319	205	289	5026.3	202	1.00E-04	0.0184
6N	CoV (%)	18.4	0.2	53.6	27.3	20.8	15.6	3.4
218	Mean	2893	100225	648	16453.2	1473	5.69E-04	0.5179
218	Std	693	101	109	2110.8	385	6.71E-05	0.0202
218	CoV (%)	24.0	0.1	16.8	12.8	26.1	11.8	3.9
235I	Mean	11120	100114	3398	23700.2	5159	1.09E-03	0.3766
235I	Std	3657	27	1318	4027.8	1962	1.47E-04	0.0204
235I	CoV (%)	32.9	0.0	38.8	17.0	38.0	13.5	5.4
235S	Mean	30867	100091	13245	22644.8	19513	7.36E-04	0.3573
235S	Std	3483	38	6130	6419.6	2450	3.10E-04	0.0562
235S	CoV (%)	11.3	0.0	46.3	28.3	12.6	42.1	15.7
330B	Mean	920	100642	227	17567.4	436	5.35E-04	0.6457
330B	Std	70	62	20	836.0	42	1.15E-04	0.0369
330B	CoV (%)	7.7	0.1	8.8	4.8	9.6	21.5	5.7
330I	Mean	6522	100380	1274	11350.0	4636	7.47E-04	0.3805
330I	Std	1317	223	154	1152.4	841	1.22E-04	0.0171
330I	CoV (%)	20.2	0.2	12.1	10.2	18.1	16.3	4.5

Table 5-2. (continued)

Mix		Cycles to Failure	Strain at failure (microstrain)	Flow Number (FN)	Strain at FN (microstrain)	Cycles at 30,000 microstrain	A	m
330S	Mean	4521	100223	1150	17129.3	2502	7.24E-04	0.4572
330S	Std	642	82	281	3034.7	465	3.26E-04	0.0381
330S	CoV (%)	14.2	0.1	24.4	17.7	18.6	45.1	8.3
Alt	Mean	29370	44178	6085	10011.4	24831	8.58E-04	0.3022
Alt	Std	17337	36708	5257	4873.2	15801	1.81E-04	0.0301
Alt	CoV (%)	59.0	83.1	86.4	48.7	63.6	21.1	10.0
Ded	Mean	272	101854	77	22384.1	115	1.27E-03	0.6711
Ded	Std	40	350	11	1433.8	22	4.73E-04	0.0479
Ded	CoV (%)	14.8	0.3	14.8	6.4	19.5	37.2	7.1
F52	Mean	796	101482	209	13805.9	519	8.26E-04	0.5276
F52	Std	153	308	48	1018.5	118	6.41E-05	0.0227
F52	CoV (%)	19.2	0.3	23.1	7.4	22.8	7.8	4.3
HW4	Mean	742	100792	199	21502.0	315	9.48E-04	0.5919
HW4	Std	94	157	54	3861.2	61	1.52E-04	0.0446
HW4	CoV (%)	12.6	0.2	26.9	18.0	19.4	16.0	7.5
I80B	Mean	11541	100117	3106	17036.8	6928	8.85E-04	0.3759
I80B	Std	1637	46	2248	3093.7	1734	3.02E-04	0.0436
I80B	CoV (%)	14.2	0.0	72.4	18.2	25.0	34.1	11.6
I80S	Mean	12408	100206	1797	16057.6	7059	8.58E-04	0.3934
I80S	Std	11020	248	265	4354.3	6615	2.91E-04	0.0640
I80S	CoV (%)	88.8	0.2	14.7	27.1	93.7	34.0	16.3
Jewell	Mean	7321	100150	1602	15512.0	4275	8.47E-04	0.3956
Jewell	Std	1191	51	300	1793.6	642	2.10E-04	0.0293
Jewell	CoV (%)	16.3	0.1	18.7	11.6	15.0	24.8	7.4
NW	Mean	4863	100206	1135	18815.5	2455	1.09E-03	0.4117
NW	Std	878	92	333	5061.9	626	4.56E-04	0.0438
NW	CoV (%)	18.1	0.1	29.3	26.9	25.5	41.8	10.6
Rose	Mean	9237	100287	2325	16733.8	5462	6.59E-04	0.4153
Rose	Std	2756	157	549	1451.1	1280	4.57E-05	0.0126
Rose	CoV (%)	29.8	0.2	23.6	8.7	23.4	6.9	3.0

Table 5-3. Flow number results for the freezer-conditioned samples tested in air

Mix		Cycles to Failure	Strain at failure (microstrain)	Flow Number (FN)	Strain at FN (microstrain)	Cycles at 30,000 microstrain	A	m
6N	Mean	7266	100233	2194	15860.6	4177	4.76E-04	0.5088
6N	Std	9273	124	3234	2481.7	5397	2.19E-04	0.0554
6N	CoV (%)	127.6	0.1	147.4	15.6	129.2	46.1	10.9
218	Mean	2659	100253	494	9715.5	1621	2.14E-04	0.6210
218	Std	534	49	126	1889.8	359	5.97E-05	0.0534
218	CoV (%)	20.1	0.0	25.4	19.5	22.2	27.9	8.6
235I	Mean	14568	100095	4146	18134.5	7964	4.43E-04	0.4512
235I	Std	6431	38	2381	3629.1	3533	1.38E-04	0.0124
235I	CoV (%)	44.1	0.0	57.4	20.0	44.4	31.2	2.8
235S	Mean	31344	68986	16603	16883.5	26316	3.10E-04	0.4289
235S	Std	11434	42610	12112	1605.3	13970	1.51E-04	0.0629
235S	CoV (%)	36.5	61.8	72.9	9.5	53.1	48.8	14.7
330B	Mean	1063	100690	229	13476.8	564	3.18E-04	0.6905
330B	Std	136	62	24	764.6	87	5.18E-05	0.0231
330B	CoV (%)	12.8	0.1	10.4	5.7	15.3	16.3	3.3
330I	Mean	6044	100278	1332	9936.4	4274	2.29E-04	0.5229
330I	Std	619	77	477	3961.1	336	8.37E-05	0.0212
330I	CoV (%)	10.2	0.1	35.8	39.9	7.9	36.6	4.1
330S	Mean	18210	77861	5200	13417.8	12681	4.36E-04	0.4793
330S	Std	19901	33817	6425	2866.0	14246	3.66E-04	0.0955
330S	CoV (%)	109.3	43.4	123.6	21.4	112.3	83.9	19.9
Alt	Mean	27123	43836	8250	10750.5	25081	4.12E-04	0.3748
Alt	Std	8202	34436	5164	3314.9	9531	2.38E-04	0.0624
Alt	CoV (%)	30.2	78.6	62.6	30.8	38.0	57.8	16.7
Ded	Mean	612	101324	170	19808.6	289	7.40E-04	0.6398
Ded	Std	51	151	17	1262.3	19	8.96E-05	0.0273
Ded	CoV (%)	8.4	0.1	10.2	6.4	6.7	12.1	4.3
F52	Mean	956	101948	218	9280.3	689	3.09E-04	0.6364
F52	Std	196	244	74	1632.7	148	5.82E-05	0.0370
F52	CoV (%)	20.5	0.2	34.1	17.6	21.4	18.8	5.8
HW4	Mean	4142	100542	1007	16740.1	2426	5.55E-04	0.5559
HW4	Std	6490	256	1539	588.6	3961	6.68E-05	0.0843
HW4	CoV (%)	156.7	0.3	152.9	3.5	163.3	12.0	15.2
I80B	Mean	10813	100190	2089	9283.4	7658	2.17E-04	0.5276
I80B	Std	5209	68	1310	4097.3	4047	1.49E-04	0.1042
I80B	CoV (%)	48.2	0.1	62.7	44.1	52.8	68.6	19.7
I80S	Mean	15532	100140	4849	14312.7	10302	2.32E-04	0.5011
I80S	Std	9485	69	4137	2847.1	6917	7.86E-05	0.0581
I80S	CoV (%)	61.1	0.1	85.3	19.9	67.1	33.8	11.6

Table 5-3. (continued)

Mix		Cycles to Failure	Strain at failure (microstrain)	Flow Number (FN)	Strain at FN (microstrain)	Cycles at 30,000 microstrain	A	m
Jewell	Mean	4460	82266	1133	10999.1	2941	3.39E-04	0.5291
Jewell	Std	1737	40083	292	2251.2	979	1.99E-04	0.1143
Jewell	CoV (%)	39.0	48.7	25.8	20.5	33.3	58.9	21.6
NW	Mean	5011	100178	1186	13828.5	2981	3.50E-04	0.5192
NW	Std	1040	71	324	1936.1	699	6.08E-05	0.0338
NW	CoV (%)	20.8	0.1	27.3	14.0	23.5	17.4	6.5
Rose	Mean	19326	102306	4348	15918.6	11493	3.50E-04	0.4601
Rose	Std	11810	4954	3013	4389.7	7806	9.78E-05	0.0392
Rose	CoV (%)	61.1	4.8	69.3	27.6	67.9	27.9	8.5

Table 5-4. Flow number results for the freezer-conditioned samples tested under water

Mix		Cycles to Failure	Strain at failure (microstrain)	Flow Number (FN)	Strain at FN (microstrain)	Cycles at 30,000 microstrain	A	m
6N	Mean	5374	100289	1085	13192.7	3414	5.79E-04	0.4536
6N	Std	2570	72	450	2811.4	1819	1.80E-04	0.0247
6N	CoV (%)	47.8	0.1	41.5	21.3	53.3	31.1	5.4
218	Mean	3499	100200	732	12925.8	1991	3.32E-04	0.5585
218	Std	173	52	98	1615.2	81	9.29E-05	0.0397
218	CoV (%)	4.9	0.1	13.3	12.5	4.0	28.0	7.1
235I	Mean	20844	100056	3447	11771.7	12639	5.11E-04	0.4430
235I	Std	9582	289	1828	5942.8	4783	3.91E-04	0.1472
235I	CoV (%)	46.0	0.3	53.0	50.5	37.8	76.6	33.2
235S	Mean	39696	51494	13895	14446.7	31893	5.09E-04	0.3470
235S	Std	680	31811	5853	4838.6	5335	1.70E-04	0.0378
235S	CoV (%)	1.7	61.8	42.1	33.5	16.7	33.3	10.9
330B	Mean	3449	94900	791	16126.5	1663	4.12E-04	0.5750
330B	Std	1016	11876	323	2220.3	641	2.30E-04	0.0981
330B	CoV (%)	29.5	12.5	40.9	13.8	38.5	55.8	17.1
330I	Mean	12863	100184	3992	13671.1	9113	4.05E-04	0.4204
330I	Std	1480	92	1129	2637.5	1037	9.91E-05	0.0328
330I	CoV (%)	11.5	0.1	28.3	19.3	11.4	24.5	7.8
330S	Mean	26165	50252	5420	11642.7	25015	8.90E-04	0.3077
330S	Std	17400	45863	3966	4570.3	18959	2.70E-04	0.0788
330S	CoV (%)	66.5	91.3	73.2	39.3	75.8	30.3	25.6
Alt	Mean	40000	15018	35335	11674.3	33927	3.93E-04	0.3634
Alt	Std	0	3311	4366	2745.4	13562	3.49E-04	0.0861
Alt	CoV (%)	0.0	22.0	12.4	23.5	40.0	88.6	23.7
Ded	Mean	994	100736	245	17923.5	484	6.25E-04	0.6274
Ded	Std	176	296	77	4548.7	121	2.99E-04	0.0610
Ded	CoV (%)	17.7	0.3	31.4	25.4	24.9	47.8	9.7

Table 5-4. (continued)

Mix		Cycles to Failure	Strain at failure (microstrain)	Flow Number (FN)	Strain at FN (microstrain)	Cycles at 30,000 microstrain	A	m
F52	Mean	1496	101070	414	13077.5	998	6.19E-04	0.5267
F52	Std	734	329	298	3155.3	480	1.99E-04	0.0625
F52	CoV (%)	49.1	0.3	72.0	24.1	48.1	32.2	11.9
HW4	Mean	5723	96944	2153	19910.5	3304	6.68E-04	0.5115
HW4	Std	8186	7813	3571	2591.8	5063	1.76E-04	0.0869
HW4	CoV (%)	143.0	8.1	165.9	13.0	153.2	26.4	17.0
I80B	Mean	18615	100103	3167	9518.9	13432	4.71E-04	0.3725
I80B	Std	3885	24	1192	2745.1	3576	1.20E-04	0.0153
I80B	CoV (%)	20.9	0.0	37.6	28.8	26.6	25.4	4.1
I80S	Mean	24347	68181	8990	12669.6	20032	5.40E-04	0.3889
I80S	Std	12389	43780	8766	3521.3	13401	4.45E-04	0.0656
I80S	CoV (%)	50.9	64.2	97.5	27.8	66.9	82.3	16.9
Jewell	Mean	10510	69888	2479	14184.5	7326	8.90E-04	0.3600
Jewell	Std	3520	41818	566	3064.1	1651	3.93E-04	0.0648
Jewell	CoV (%)	33.5	59.8	22.8	21.6	22.5	44.1	18.0
NW	Mean	6707	100120	1973	21244.7	3234	7.76E-04	0.4398
NW	Std	1178	44	696	1776.9	917	2.05E-04	0.0326
NW	CoV (%)	17.6	0.0	35.2	8.4	28.4	26.5	7.4
Rose	Mean	26033	82459	7182	14066.7	18615	5.63E-04	0.3650
Rose	Std	7953	39568	4131	3840.8	12014	1.49E-04	0.0665
Rose	CoV (%)	30.5	48.0	57.5	27.3	64.5	26.4	18.2

Table 5-5. Flow number results for unconditioned samples tested under water

Mix		Cycles to Failure	Strain at failure (microstrain)	Flow Number (FN)	Strain at FN (microstrain)	Cycles at 30,000 microstrain	A	m
235I	Mean	11976	100104	2700	16116.2	6634	5.36E-04	0.4350
235I	Std	2255	43	1480	5546.5	1445	2.15E-04	0.0422
235I	CoV	18.8	0.0	54.8	34.4	21.8	40.1	9.7
235S	Mean	27012	100126	8640	21260.6	16694	6.89E-04	0.3669
235S	Std	5834	78	1548	4891.6	3858	3.27E-04	0.0554
235S	CoV	21.6	0.1	17.9	23.0	23.1	47.4	15.1
HW4	Mean	3020	100304	646	17657.3	1471	8.49E-04	0.4766
HW4	Std	1126	115	245	5431.2	457	3.31E-04	0.0576
HW4	CoV	37.3	0.1	37.9	30.8	31.1	39.0	12.1
I80S	Mean	20194	69457	5261	15988.6	17487	6.40E-04	0.3745
I80S	Std	16039	42731	3303	7438.2	17445	2.14E-04	0.1016
I80S	CoV	79.4	61.5	62.8	46.5	99.8	33.5	27.1
Jewell	Mean	18192	100152	4662	18086.6	10779	9.63E-04	0.3624
Jewell	Std	12985	50	2810	1978.9	8498	5.80E-04	0.0670
Jewell	CoV	71.4	0.0	60.3	10.9	78.8	60.3	18.5

It can be concluded from Tables 5-1 through 5-5 that the parameters tested (cycles to failure, flow number, cycles at 30,000 microstrain, and parameter *A*) have very high variability. Parameter *m* has lower variability compared to the other parameters. Tables 5-6 through 5-9 present the ratio of dividing the different parameters at each condition by those of the control samples. It should be noted that the strain at flow number and parameter *A* are expected to increase with moisture conditioning, so the ratios are expected to be greater than one.

Table 5-6. Ratio of flow number test parameters for water-conditioned samples tested under water to control samples

Mix	Cycles to Failure	Flow Number	Strain at Flow Number	Cycles at 30,000 microstrain	A	m
6N	0.17	0.31	1.82	0.14	3.29	0.97
218	0.99	1.21	1.64	0.86	3.52	0.79
235I	1.13	1.35	1.50	0.91	4.02	0.73
235S	0.83	0.89	1.49	0.68	4.65	0.76
330B	0.69	0.92	1.69	0.57	2.57	0.91
330I	1.62	1.45	1.13	1.70	4.55	0.63
330S	0.14	0.06	1.32	0.09	6.03	0.93
Alt	0.85	0.47	1.11	0.78	5.42	0.70
Ded	0.47	0.37	0.73	0.36	3.92	0.83
F52	0.67	0.72	1.40	0.61	3.45	0.80
HW4	0.09	0.10	1.88	0.05	3.52	0.95
I80B	2.41	3.23	1.82	2.17	6.97	0.60
I80S	0.40	0.16	1.63	0.25	2.06	1.01
Jewell	1.33	1.06	0.94	1.36	2.52	0.75
NW	1.51	1.62	1.58	1.27	4.82	0.68
Rose	0.27	0.41	2.48	0.18	6.18	0.90

Table 5-7. Ratio of flow number test parameters for freezer-conditioned samples tested in air to control samples

Mix	Cycles to Failure	Flow Number	Strain at Flow Number	Cycles at 30,000 microstrain	A	m
6N	0.69	1.25	1.57	0.62	2.43	0.92
218	0.91	0.93	0.97	0.95	1.32	0.95
235I	1.48	1.64	1.15	1.41	1.64	0.87
235S	0.85	1.12	1.11	0.91	1.96	0.91
330B	0.80	0.92	1.29	0.74	1.53	0.97
330I	1.50	1.52	0.99	1.57	1.39	0.87
330S	0.58	0.27	1.03	0.45	3.63	0.97
Alt	0.79	0.64	1.20	0.79	2.60	0.87
Ded	1.05	0.83	0.65	0.91	2.28	0.79
F52	0.80	0.75	0.94	0.81	1.29	0.97
HW4	0.49	0.52	1.46	0.40	2.06	0.89
I80B	2.26	2.17	0.99	2.40	1.71	0.84
I80S	0.51	0.44	1.45	0.36	0.56	1.29
Jewell	0.81	0.75	0.67	0.94	1.01	1.00
NW	1.56	1.69	1.16	1.54	1.55	0.86
Rose	0.57	0.77	2.36	0.37	3.28	0.99

Table 5-8. Ratio of flow number test parameters for freezer-conditioned samples tested under water to control samples

Mix	Cycles to Failure	Flow Number	Strain at Flow Number	Cycles at 30,000 microstrain	A	m
6N	0.51	0.62	1.30	0.50	2.96	0.82
218	1.19	1.37	1.29	1.16	2.05	0.85
235I	2.12	1.37	0.75	2.24	1.89	0.85
235S	1.07	0.94	0.95	1.11	3.22	0.74
330B	2.58	3.19	1.55	2.19	1.98	0.81
330I	3.19	4.56	1.36	3.35	2.47	0.70
330S	0.83	0.28	0.90	0.88	7.41	0.63
Alt	1.16	2.72	1.30	1.06	2.48	0.84
Ded	1.70	1.19	0.58	1.52	1.93	0.78
F52	1.26	1.43	1.33	1.17	2.59	0.80
HW4	0.67	1.11	1.74	0.55	2.48	0.82
I80B	3.89	3.29	1.02	4.21	3.71	0.60
I80S	0.79	0.82	1.28	0.70	1.29	1.00
Jewell	1.92	1.64	0.86	2.34	2.65	0.68
NW	2.09	2.82	1.78	1.68	3.43	0.73
Rose	0.76	1.27	2.08	0.60	5.28	0.79

Table 5-9. Ratio of flow number test parameters for unconditioned samples tested under water to control samples

Mix	Cycles to Failure	Flow Number	Strain at Flow Number	Cycles at 30,000 microstrains	A	m
235I	1.22	1.07	1.03	1.17	1.98	0.84
235S	0.73	0.58	1.23	0.58	4.36	0.78
HW4	0.36	0.33	1.41	0.24	3.16	0.77
I80S	0.66	0.48	1.63	0.61	1.53	0.96
Jewell	3.32	3.08	1.10	3.44	2.87	0.68

The mixes were then ranked based on the ratios for each of the parameters studied. Ranks of the water-conditioned mixes tested under water are presented in Table 5-10. Ranks for freezer-conditioned mixes tested in air are presented in Table 5-11. Ranks for freezer-conditioned samples tested under water are presented in Table 5-12.

Table 5-10. Ranking of the mixes based on the ratio of flow number test parameters for water-conditioned samples tested under water to control samples

Mix	Cycles to Failure	Flow Number	Strain at Flow Number	Cycles at 30,000 microstrain	A	m
6N	14	13	14	14	4	2
218	6	5	11	6	6	9
235I	5	4	8	5	9	12
235S	8	8	7	8	11	10
330B	9	7	12	10	3	5
330I	2	3	4	2	10	15
330S	15	16	5	15	14	4
Alt	7	10	3	7	13	13
Ded	11	12	1	11	8	7
F52	10	9	6	9	5	8
HW4	16	15	15	16	7	3
I80B	1	1	13	1	16	16
I80S	12	14	10	12	1	1
Jewell	4	6	2	3	2	11
NW	3	2	9	4	12	14
Rose	13	11	16	13	15	6

Table 5-11. Ratio of flow number test parameters for freezer-conditioned samples tested in air to control samples

Mix	Cycles to Failure	Flow Number	Strain at Flow Number	Cycles at 30,000 microstrain	A	m
6N	12	5	15	12	13	8
218	6	7	4	5	4	7
235I	4	3	9	4	8	12
235S	7	6	8	7	10	9
330B	9	8	12	11	6	5
330I	3	4	5	2	5	11
330S	13	16	7	13	16	6
Alt	11	13	11	10	14	13
Ded	5	9	1	8	12	16
F52	10	12	3	9	3	4
HW4	16	14	14	14	11	10
I80B	1	1	6	1	9	15
I80S	15	15	13	16	1	1
Jewell	8	11	2	6	2	2
NW	2	2	10	3	7	14
Rose	14	10	16	15	15	3

Table 5-12. Ratio of flow number test parameters for freezer-conditioned samples tested under water to control samples

Mix	Cycles to Failure	Flow Number	Strain at Flow Number	Cycles at 30,000 microstrain	A	m
6N	16	15	10	16	11	6
218	9	9	8	9	5	3
235I	4	8	2	4	2	2
235S	11	13	5	10	12	11
330B	3	3	13	5	4	7
330I	2	1	12	2	6	13
330S	12	16	4	12	16	15
Alt	10	5	9	11	7	4
Ded	7	11	1	7	3	10
F52	8	7	11	8	9	8
HW4	15	12	14	15	8	5
I80B	1	2	6	1	14	16
I80S	13	14	7	13	1	1
Jewell	6	6	3	3	10	14
NW	5	4	15	6	13	12
Rose	14	10	16	14	15	9

5.2 Statistical Analysis

The parameters studied in the flow number test showed very high variability represented in the coefficient of variation. The parameter that showed the least variability in most of the cases is the parameter m. Cycles to failure will not be included in the statistical analysis because cycles to failure are based on two different failure conditions caused by the machine limit, which introduced extra variability to this parameter. The flow number ratios are scattered around one, which provides inconclusive results. The variability in the flow number ratios is shown in Figure 5-1 for one of the conditions—the freezer-conditioned samples tested in air. This variability is similar to what was found by Solaimanian et al. (2007). Strain at flow number followed a similar trend, as shown in Figure 5-2. Both parameters A and m offer promising results, but only parameter m will be considered because it depends mainly on the material properties and the ratios achieved using this parameter are very consistent in being less than one, except for one reading that was 1.29.

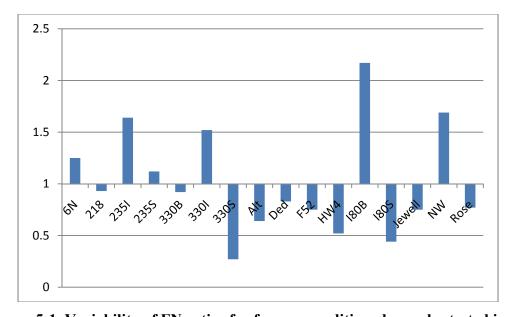


Figure 5-1. Variability of FN ratios for freezer-conditioned samples tested in air

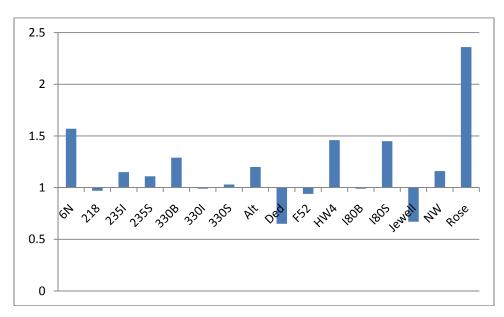


Figure 5-2. Variability of strain at flow number ratios for freezer-conditioned samples tested in air

6. AASHTO T 283 TEST RESULTS

Performing the AASHTO T 283 test is important to compare the results achieved using the other methods to those achieved using the AASHTO T 283 test. The main reason behind the comparison is that AASHTO T 283 is what practitioners are used to performing and thus provides a good reference to the test that is currently being used in practice. The test followed the methodology described in Chapter 3. Two groups of samples were tested: a control group and a moisture-conditioned group, which was subjected to one freeze/thaw cycle. Five samples were tested in each group. Table 6-1 presents the tensile strength for both groups for the mixes tested. The individual sample results are presented in Appendix C. The results were then used to calculate the TSR, which is presented in Table 6-2. The TSR was used to rank the mixes, where 1 represents the least moisture-susceptible mix. The ranking of the mixes is presented in Table 6-2. The next step was to perform a statistical analysis on the results. A statistical analysis software (JMP) was used in the analysis. The first hypothesis that was tested was that the mean of the two tested groups for all the mixes was equal. This hypothesis was tested by a pairwise comparison ttest. This resulted in a p-value of less than 0.0001, which means that the hypothesis is rejected at a level of significance $\alpha = 0.05$ and that the two groups are statistically different. The second hypothesis that was tested was that the mean of the two groups for each mix is equal for the five samples tested for this mix. The results of this analysis are presented in Table 6-2. The results are presented as a p-value and whether the two means are statistically different. It can be seen from the results of this analysis that the means of the good performing mixes are not statistically different (p-value less than 0.05). It appears that the transition between the statistically similar and the statistically different groups occurs somewhere between TSR values of 0.93 and 0.86.

Table 6-1. Tensile strength for both groups

Mix	Sample	Tensile strength, control (kPa)	Tensile Strength, moisture (kPa)
6N	Mean	994.8	854.9
6N	Stdev	25.6	69.7
6N	COV	2.6	8.2
218	Mean	1206.3	859.2
218	Stdev	69.3	80.2
218	COV	5.7	9.3
235I	Mean	1204.3	1170.5
235I	Stdev	31.8	36.5
235I	COV	2.6	3.1
235S	Mean	1174.7	1206.8
235S	Stdev	45.8	73.4
235S	COV	3.9	6.1
330B	Mean	1014.5	777.8
330B	Stdev	67.7	34.4
330B	COV	6.7	4.4
330I	Mean	1202.9	1145.7
330I	Stdev	56.1	22.2

Table 6-1. (continued)

Mix	Sample	Tensile strength, control (kPa)	Tensile Strength, moisture (kPa)
330I	COV	4.7	1.9
330S	Mean	1266.6	1248.8
330S	Stdev	13.9	7.3
330S	COV	1.1	0.6
ALT	Mean	1343.3	1339.6
ALT	Stdev	5.3	5.2
ALT	COV	0.4	0.4
DED	Mean	1171.8	873.0
DED	Stdev	50.1	30.3
DED	COV	4.3	3.5
F52	Mean	839.3	781.4
F52	Stdev	111.6	57.5
F52	COV	13.3	7.4
HW4	Mean	1135.9	910.3
HW4	Stdev	164.5	180.8
HW4	COV	14.5	19.9
I80B	Mean	1290.9	1247.4
I80B	Stdev	10.3	18.5
I80B	COV	0.8	1.5
I80S	Mean	1243.0	981.1
I80S	Stdev	13.3	42.5
I80S	COV	1.1	4.3
Jewell	Mean	1177.5	1107.0
Jewell	Stdev	24.0	93.1
Jewell	COV	2.0	8.4
NW	Mean	914.3	789.3
NW	Stdev	19.1	79.5
NW	COV	2.1	10.1
Rose	Mean	1220.8	1221.6
Rose	Stdev	30.8	15.1
Rose	COV	2.5	1.2

Table 6-2. TSR and mixture ranking

Mix	Tensile Strength Ratio (TSR)	p-value	Statistical Variation	Rank
6N	0.86	0.0109	Statistically different	11
218	0.71	0.0042	Statistically different	16
235I	0.97	0.2596	Statistically the same	5
235S	1.03	0.4716	Statistically the same	1
330B	0.77	0.0006	Statistically different	14
330I	0.95	0.1198	Statistically the same	7
330S	0.99	0.0563	Statistically the same	4
ALT	1.00	0.3577	Statistically the same	3
DED	0.75	< 0.0001	Statistically different	15
F52	0.93	0.4566	Statistically the same	9
HW4	0.80	0.0385	Statistically different	12
I80B	0.97	0.0220	Statistically the same	6
I80S	0.79	0.0004	Statistically different	13
Jewell	0.94	0.2292	Statistically the same	8
NW	0.86	0.0376	Statistically different	10
Rose	1.00	0.9672	Statistically the same	2

7. COMPARISON BETWEEN THE DIFFERENT TEST METHODS

In order to investigate the difference in results between the three tests investigated, the results achieved using the different tests were compared. The results from the three tests were compared together. The comparisons were done between samples with the same conditions. This means that only samples tested under condition 4 (moisture-conditioned with one freeze/thaw cycle) and condition 1 (control) were included in this comparison. Based on the discussion presented earlier about the dependence of the E* ratio on temperature and frequency, a situation corresponding to that of the flow number was considered. The master curves were used to calculate the dynamic modulus at 37°C and a loading frequency of 10 Hz. These dynamic modulus values were then used to calculate the ratios used in the statistical analysis. The average of the E* ratios of all the tested temperature-frequency combinations was also used in the comparison. A statistical analysis software (JMP) was used to run a statistical analysis to show statistically different groups. The comparison was done for the ratio between the conditioned and unconditioned group results. The results of the different tests are presented in Table 7-1. A paired t-test comparison was performed on these results. The results of the comparison are presented in Table 7-2. The results showed that there is no statistical difference between the parameter m and the TSR ratio and the average E^* ratio. All the other comparisons are statistically different. Figures 7-1 through 7-6 show a graphical representation for the tested pairs. The ranking of the mixes based on the different methods is presented in Table 7-3.

Table 7-1. Results from different tests

Mix	TSR ratio	E* ratio (average)	E* ratio (37°C-10Hz)	Parameter "m" ratio
6N	0.86	0.92	1.10	0.92
218	0.71	1.08	1.19	0.95
235I	0.97	0.87	0.91	0.87
235s	1.03	1.17	1.27	0.91
330B	0.77	1.03	1.28	0.97
330I	0.95	1.09	1.31	0.87
330s	0.99	0.90	0.78	0.97
ALT	1.00	1.03	1.26	0.87
Ded	0.75	1.00	1.21	0.79
F52	0.93	1.01	1.10	0.97
HW4	0.80	0.80	0.59	0.89
I80B	0.97	1.01	1.04	0.84
I80s	0.79	0.90	0.92	1.29
Jewell	0.94	1.11	1.37	1.00
NW	0.86	0.99	1.25	0.86
Rose	1.00	0.83	0.78	0.99

Table 7-2. Statistical comparison between the different methods*

	E* ratio (average)	E* ratio (37°C-10Hz)	Parameter "m" ratio
TSR ratio	0.0235	0.0090	0.3460
E* ratio (average)		0.0125	0.2612
E* ratio (37°C-10Hz)			0.0453

^{*} Values in bold are statistically significant at α =0.05

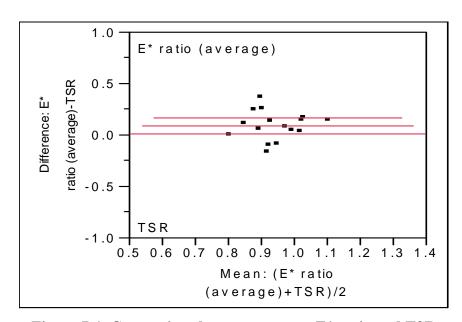


Figure 7-1. Comparison between average E* ratio and TSR

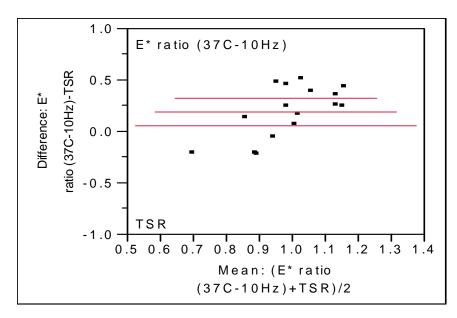


Figure 7-2. Comparison between E* (37°C-10 Hz) ratio and TSR

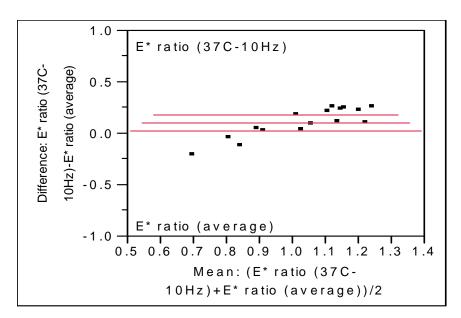


Figure 7-3. Comparison between E* (37°C-10 Hz) and average E* ratios

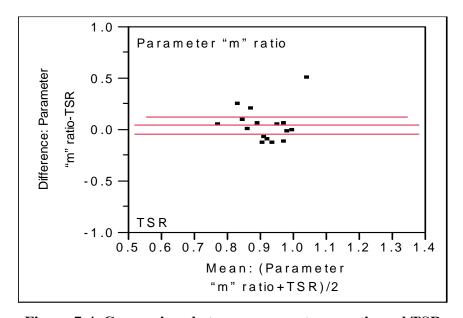


Figure 7-4. Comparison between parameter *m* ratio and TSR

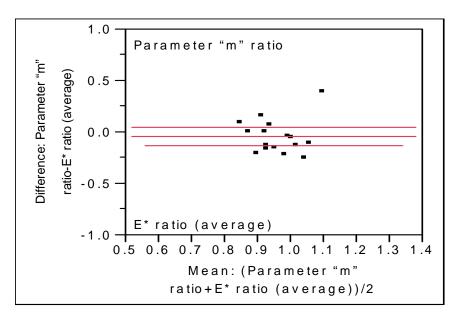


Figure 7-5. Comparison between average E^* and parameter m ratios

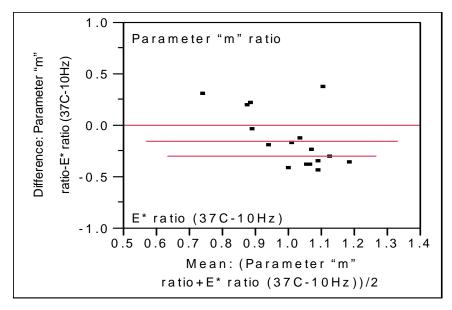


Figure 7-6. Comparison between E^* (37°C-10 Hz) and parameter m ratios

Table 7-3. Ranking of the mixes using the different methods

Mix	TSR ratio	E* ratio (average)	E* ratio (37°C-10Hz)	Parameter "m" ratio
6N	10	11	10	8
218	16	4	8	7
235I	5	14	13	13
235s	1	1	4	9
330B	14	6	3	4
330I	7	3	2	11
330s	4	12	14	6
ALT	2	5	5	12
Ded	15	9	7	16
F52	9	8	9	5
HW4	12	16	16	10
I80B	6	7	11	15
I80s	13	13	12	1
Jewell	8	2	1	2
NW	11	10	6	14
Rose	3	15	15	3

8. CONCLUSIONS AND RECOMMENDATIONS

In this research, 16 mixes were collected from the state of Iowa. The mixes were selected to cover a wide variety of materials and traffic levels. For each mix, samples were compacted using a Superpave gyratory compactor and were divided into four groups with equal average air voids and different conditioning/testing schemes. Five of the mixes were subjected to a fifth conditioning/testing scheme. Dynamic modulus, flow number, and TSR (AASHTO T 283) tests were performed on the samples. The results were statistically compared.

8.1 Conclusions

Based on the range of materials and the parameters tested in this research, the following can be concluded:

- The dynamic test is sensitive to the effect of moisture on the mixture. The extent by which the dynamic modulus value is affected due to the moisture conditioning is impacted by the temperature and the loading frequency. This means that the effect of moisture varies by the loading conditions.
- For the dynamic modulus results, the effect of moisture appears more with higher temperatures and/or lower frequencies.
- For best results, the dynamic modulus test results need to be combined either with information about the conditions at which the mix is going to be used or with a tool that helps visualize the effect of temperature over a range of temperatures and frequencies.
- Plotting a master curve provides a good tool to visualize the effect of moisture on the mix.
- All the parameters evaluated from the flow number test results gave mixed results, except for the parameter m, which provided consistent results.
- There is no evidence of a statistical difference between the ratios calculated using the average E* values and the indirect tensile test when compared to parameter m.
- The different conditioning schemes used in conjunction with the flow number test showed no evidence of statistical difference. The effect of the different conditioning schemes of the mixes on the flow number results varied from one mix to the other, and this variability makes them inconclusive. These results can be attributed to the variability of the flow number test. Alternative methods of examining flow number data need to be considered, such as accumulated strain at a prescribed number of load cycles.

8.2 Recommendations

Based on the results of this research, the following suggestions are recommended:

• Try the various testing/conditioning with the dynamic modulus test by using LVDTs that can be tested under water or by using the actuator LVDT, which might reduce the accuracy of the results.

- Run the dynamic modulus test only and skip the flow number test. This gives a chance to moisture condition the sample after running the control test, and then the sample can be tested again. This approach will reduce the variability introduced by testing two sets of samples.
- The dynamic modulus results should be related to the operating conditions.
- The use of parameter *m* calculated from the flow number test eliminates the need to test the sample to failure because the sample does not need to reach the tertiary flow to calculate this parameter.
- Monitoring the field performance of the mixes and comparing it to the laboratory results is very important to judge the quality of the test results and to judge which test provides the most accurate results.

REFERENCES

- AASHTO T 165-55. Effect of Water on Cohesion of Compacted Bituminous Mixtures. *Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests.* Washington D.C., 1997.
- AASHTO T 182-84. Coating and Stripping of Bitumen-Aggregate Mixtures. *Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests.* Washington D.C., 1997.
- AASHTO T 283-89. Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. Standard Specifications for Transportation Materials and Methods and Sampling and Testing Part II: Tests. Washington D.C., 1993.
- Alam, Muhammad Murshed; Tandon, Vivek; Nazarian, Soheil; and Tahmoressi; Maghsoud. "Identification of Moisture-Susceptible Asphalt Concrete Mixes Using Modified Environmental Conditioning System." *Transportation Research Record 1630*, TRB, National Highway Research Council, Washington, D.C., pp. 106–116, 1998.
- Al-Swailmi, Saleh and Terrel, Ronald. "Evaluation of Water Damage of Asphalt Concrete Mixtures Using the Environmental Conditioning System (ECS)." *Journal of the Association of Asphalt Paving Technologists*, Vol. 61, pp. 405–435, 1992a.
- Al-Swailmi, Saleh and Terrel, Ronald. "Evaluation of the Environmental Conditioning System (ECS) with AASHTO T-283." *Journal of the Association of Asphalt Paving Technologists*, Vol. 61, pp. 150–171, 1992b.
- Aschenbrener, T.; McGennis, R.B; & Terrel, R.L. "Comparison of Several Moisture Susceptibility Tests to Pavements of Known Field Performance." *Journal of the Association of Asphalt Paving Technologists*, Vol. 64, pp. 163–208, 1995.
- Asphalt Institute. *Cause and Prevention of Stripping in Asphalt Pavements*. Educational Series No. 10, College Park, Md. 1981.
- ASTM D1075, Standard Test Method for Effect of Water on Compressive Strength of Compacted Bituminous Mixtures. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International, 2004.
- ASTM D3497. Standard Test Method for Dynamic Modulus of Asphalt Mixtures. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International, 2003.
- ASTM D3625, Standard Practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water. *Annual Book of ASTM Standards 4.03*. West Conshohocken, PA: ASTM International, 2005.
- ASTM D4867. Standard Test Method for Effect of Moisture on Asphalt Concrete Paving Mixtures. *Annual Book of ASTM Standards* 4.03. West Conshohocken, PA: ASTM International, 2004.
- Bausano, J.P., Kvasnak, A.N., and R.C. Williams, "Transitioning Moisture Susceptibility Testing to Accommodate Superpave Gyratory Compaction" Canadian Technical Asphalt Association 2006 Conference, Charlottetown, Prince Edward Island, 2006.
- Bausano, Jason Paul, Development of a new test procedure to evaluate the moisture susceptibility of hot mix asphalt. Ph.D. dissertation, Iowa State University. 2006.
- Bhasin, Amit; Masad, Eyad; Little, Dallas; and Lytton, Robert. "Limits of Adhesive Bond Energy for Improved Resistance to Hot Mix Asphalt to Moisture Damage." *Transportation Research Board CD-ROM.* 85th Annual Meeting, January 22-26, 2006.

- Bonaquist, R.F., Christensen, D. W., and Stump, W., "Simple Performance Tester for Superpave Mix Design: First-Article Development and Evaluation". *National Cooperative Highway Research Program (NCHRP)*, Report 513, Washington D.C., 2003.
- Brown, E.R., Kandhal, P.S., and Zhang, J. "Performance Testing for Hot Mix Asphalt." *National Center for Asphalt Technology (NCAT)*, Report 2001-05, Alabama, 2001.
- California Test 302. "Method of Test for Film Stripping." State of California Department of Transportation. 1999.
- California Test 307. "Method of Test for Moisture Vapor Susceptibility of Bituminous Mixtures." State of California Department of Transportation. 2000.
- Cheng, DingXin; Little, Dallas N.; Lytton, Robert L.; Holste, James C. "Surface Energy Measurements of Asphalt and Its Application to Predicting Fatigue and Healing in Asphalt Mixtures." *Transportation Research Record 1810*, TRB, National Highway Research Council, Washington, D.C., pp. 44–53, 2002.
- Cheng, DingXin; Little, Dallas N.; Lytton, Robert L.; Holste, James C. "Moisture Damage Evaluation of Asphalt Mixtures by Considering Both Moisture Diffusion and Repeated-Load Conditions." *Transportation Research Record 1832*, TRB, National Highway Research Council, Washington, D.C., pp. 42–49, 2003.
- Choubane, Bouzid; Page, Gale; and Musselman, James. "Effects of Water Saturation Level on Resistance of Compacted Hot-Mix Asphalt Samples to Moisture-Induced Damage." *Transportation Research Record 1723*, TRB, National Highway Research Council, Washington, D.C., pp. 97–106, 2000.
- Cooley, L.A., P.S. Kandhal, M.S. Buchanan, F. Fee, and A. Epps, "Loaded Wheel Testers in the United States: State of the Practice," Transportation Research E-Circular, Number E-C016, Transportation Research Board, Washington, D.C., July 2000.
- Curtis, C.W.; Ensley, K; and Epps, J. "Fundamental Properties of Asphalt-Aggregate Interactions Including Adhesion and Absorption." SHRP-A-341. Strategic Highway Research Program, National Highway Research Council, Washington, D.C., 1993.
- Epps, Jon.; Sebaaly, Peter; Penaranda, Jorge; Maher, Michele; McCann, Martin; and Hand Adam. *NCHRP 444: Compatibility of a Test for Moisture-Induced Damage with Superpave Volumetric Mix Design*. Transportation Research Board, National Highway Research Council, Washington, D.C. 2000.
- Ford, M.C.; Manke, P.G.; and O'Bannon, C.E. "Quantitative Evaluation of Stripping by the Surface Reaction Test." *Transportation Research Record 515*, TRB, National Highway Research Council, Washington, D.C., pp. 40–54, 1974.
- Fromm, H.J. The Mechanisms of Asphalt Stripping from Aggregate Surfaces. *Journal of the Association of Asphalt Paving Technologists*, Vol. 43, pp 191–223, 1974.
- Goode, F.F. "Use of Immersion Compression Test in Evaluating and Designing Bituminous Paving Mixtures." In American Society of Testing and Materials (ASTM) Special Technical Publication (STP) 252, pp. 113–126, 1959.
- Graf, Peter. "Factors Affecting Moisture Susceptibility of Asphalt Concrete Mixes." *Journal of the Association of Asphalt Paving Technologists*, Vol. 55, pp. 175–204, 1986.
- Huang, Yang H., "Pavement Analysis and Design". Second Edition, Prentice Hall, New Jersey, 2004.
- International Slurry Seal Association (ISSA), "A Test Method for Determination of Methylene Blue Absorption Value (MBV) of Mineral Aggregate Fillers and Fines," ISSA Bulleting 145, 1989.

- Isacsson, W. and Jorgensen, T. Laboratory Methods for Determination of the Water Susceptibility of Bituminous Pavements. VIT Report, Swedish Road and Traffic Research Institute, No. 324A, 1987.
- Jackson, N.M. and C.D. Baldwin, "Evaluation of the Asphalt Pavement Analyzer to Predict the Relative Rutting Susceptibility of HMA in Tennessee," International Conference on Accelerated Pavement Testing October 18-20, 1999 Dissertation Number CS6-3, 1999.
- Jimenez, R.A. "Testing for Debonding of Asphalt from Aggregates." *Transportation Research Record 515*, TRB, National Highway Research Council, Washington, D.C., pp. 1–17, 1974.
- Kandhal, P. "Field and Laboratory Investigation of Stripping in Asphalt Pavements: State of the Art Report." *Transportation Research Record 1454*, TRB, *National Highway Research Council*, Washington, D.C., pp36–47, 1994.
- Kanitpong, Kunnawee and Bahia, Hussain. "Evaluation of HMA Moisture Damage in Wisconsin as it Related to Pavement Performance." Transportation Research Board CD-ROM. 85th Annual Meeting, January 22-26, 2006.
- Kennedy, Thomas W; Roberts, Freddy, L.; and Lee, Kang W. "Evaluation of the Moisture Effects on Asphalt Concrete Mixtures." *Transportation Research Record 911*, TRB, National Highway Research Council, Washington, D.C., pp. 134–143, 1983.
- Kennedy, Thomas W; Roberts, Freddy, L.; and Lee, Kang W. "Evaluating Moisture Susceptibility of Asphalt Mixtures Using the Texas Boiling Test." *Transportation Research Record 968*, TRB, National Highway Research Council, Washington, D.C., pp. 45–54, 1984.
- Khedr, Safwan A., "Deformation Mechanism in Asphaltic Concrete" <u>Journal of Transportation</u> <u>Engineering</u>, v 112, Issue 1, p 29-45, New York, Jan. 1986.
- Kvasnak, Andrea Nicole, "Development and Evaluation of Test Procedures to Identify Moisture Damage Prone Hot Mix Asphalt Pavements," PhD Dissertation, Iowa State University, 2006.
- Little, Dallas N. and Jones IV, David R. "Chemical and Mechanical Processes of Moisture Damage in Hot-Mix Asphalt Pavements." Moisture Sensitivity of Asphalt Pavements A National Seminar. February 4-6, 2003.
- Lottman, R.P. NCHRP 192: Predicting Moisture-Inducted Damage to Asphaltic Concrete.

 Transportation Research Board, National Highway Research Council, Washington, D.C. 1978.
- Lottman, R.P. NCHRP 246: *Predicting Moisture-Inducted Damage to Asphaltic Concrete Field Evaluation*. Transportation Research Board, National Highway Research Council, Washington, D.C. 1982.
- Lottman, Robert P. "Laboratory Test Method for Predicting Moisture-Induced Damage to Asphalt Concrete." *Transportation Research Record 843*, TRB, National Highway Research Council, Washington, D.C., pp. 88–95, 1982.
- Lottman, Robert P.; Chen, R.P.; Kumar, K.S.; and Wolf, L.W. "A Laboratory Test System for Prediction of Asphalt Concrete Moisture Damage." *Transportation Research Record* 515, TRB, National Highway Research Council, Washington, D.C., pp. 18–26, 1974.
- Mack, C. *Bituminous Materials*, Vol. 1 (A Holberg, ed.), Interscience Publishers, New York. 1964.

- Majidzadeh, K. and Brovold, F.N. "Special Report 98: State of the Art: Effect of Water on Bitumen-Aggregate Mixtures." *Highway Research Board (HRB)*, National Research Council, Washington, D.C. 1968.
- Majidzadeh, Kamran; Safwan Khedr; and Mohamed ElMujarrush, "Evaluation of Permanent Deformation in Asphalt Concrete Pavements," <u>Transportation Research Record</u> No. 715, pp 21-31, Washington, D.C., Dec. 1979.
- Masad, Eyad; Zollinger, Corey; Bulut, Rifat; Little, Dallas; and Lytton, Robert. "Characterization of HMA Moisture Damage Using Surface Energy and Fracture Properties." *Association of Asphalt Paving Technologists* CD-ROM. 2006.
- NCHRP "Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures." *National Cooperative Highway Research Program*, NCHRP 1-37A, 2004.
- NCHRP 9-34. Improved Conditioning Procedure for Predicting the Moisture Susceptibility of HMA Pavements, National Cooperative Highway Research Program, March 2002.
- Papazian, H. S. "The response of linear viscoelastic materials in the frequency domain with emphasis on asphalt concrete." *Proceedings of International Conference on the Structural Design of Asphalt Pavements*, Ann Arbor, Michigan: pp. 453-464, 1962.
- Pellinen, T. K., and M. W. Witczak, "Stress Dependent Master Curve Construction for Dynamic (Complex) Modulus," Journal of the Association of Asphalt Paving Technologists, vol. 71, 2002.
- Pellinen, T. K., "Complex Modulus Characteriazation of Asphalt Concrete", Modeling of Asphalt Concrete, editor Y. Richard Kim, ASCE Press, McGraw Hill, 2008.
- Plancher, H.; Miyake, G.; Venable, R.L.; and Peterson, J.C. "A Simple Laboratory Test to Indicate Moisture Susceptibility of Asphalt-Aggregate Mixtures to Moisture Damage During Repeated Freeze-Thaw Cycling." *Canadian Technical Asphalt Association Proceedings*, Vol. 25, pp. 247–262, 1980.
- Roberts, F. L.; Kandhal, P. S.; Brown, E. R.; Lee, D.; and Kennedy, T. W., "Hot Mix Asphalt Materials, Mixture Design, and Construction." 2nd Ed. *National Asphalt Pavement Association Research and Education Foundation*, Lanham, Maryland, 1996.
- Robinette, Christopher. "Testing Wisconsin Asphalt Mixtures for the 2002 AASHTO Mechanistic Design Guide." Master Thesis, Michigan Technological University, 2005.
- Romero, F.L. and Stuart, K.D. "Evaluating Accelerated Rut Testers." *Public Roads*, Vol. 62, No. 1, July-August, pp 50–54. 1998.
- Santucci, Larry, Moisture Sensitivity of Asphalt Pavements. *Technology Transfer Program, UC-Berkley's Institute of Transportation Studies*, 2002.
- Scherocman, James; Mesch, Keith; and Proctor, J. Joseph. "The Effect of Multiple Freeze-Thaw Cycle Conditioning on the Moisture Damage of Asphalt Concrete Mixtures." *Journal of the Association of Asphalt Paving Technologists*, Vol. 55, pp. 213–228, 1986.
- Scholz, T.V.; Terrel, R.L.; Al-Joaib, A; and Bea, J. "Water Sensitivity: Binder Validation." SHRP-A-402. Strategic Highway Research Program, National Research Council, Washington, D.C., 1994.
- Scott, J.A.N. "Adhesion and Disbonding Mechanisms of Asphalt Used in Highway Construction and Maintenance." *Journal of the Association of Asphalt Paving Technologists*, Vol. 47, pp19–44, 1978.
- Shatnawi, S; Nagarajaiah, M.; and Harvey, J. "Moisture Sensitivity Evaluation of Binder-Aggregate Mixtures." *Transportation Research Record 1492*, TRB, National Highway Research Council, Washington, D.C., pp. 71–84, 1995.

- Shenoy, A. and Romero, P. "Standardized Procedure for Analysis of Dynamic Modulus |*E**| Data to Predict Asphalt Pavement Distresses." Transportation Research Record 1789, TRB, National Highway Research Council, Washington D.C., 173-182, 2002.
- Solaimanian, M., Bonaquist, R.F., and Tandon, V., "Improved Conditioning and Testing for HMA Moisture Susceptibility". *National Cooperative Highway Research Program (NCHRP)*, Report 589, Washington D.C., 2007.
- Solaimanian, Mansour; Fedor, David; Bonaquist, Ramon; Soltani, Ali; and Tandon, Vivek. "Simple Performance Test for Moisture Damage Prediction in Asphalt Concrete." Association of Asphalt Paving Technologists CD-ROM. 2006.
- Solaimanian, Mansour; Harvey, John; Tahmoressi, Maghsoud; and Tandon, Vivek. "Test Methods to Predict Moisture Sensitivity of Hot-Mix Asphalt Pavements." *Moisture Sensitivity of Asphalt Pavements A National Seminar*. San Diego, California, February 4-6, 2003.
- Stroup-Gardiner, Mary and Epps, J. "Laboratory Tests for Assessing Moisture Damage of Asphalt Concrete Mixtures." *Transportation Research Record 1353*, TRB, National Highway Research Council, Washington, D.C., pp. 15–23, 1992.
- Tandon, Vivek; Alam, Muhammad Murshed; Nazarian, Soheil; and Vemuri, Nalini. "Significance of Conditioning Parameters Affecting Distinction of Moisture Susceptible Asphalt Concrete Mixtures in the Laboratory." *Journal of the Association of Asphalt Paving Technologists*, Vol. 67, pp. 334–353, 1998.
- Tarrer, A.R. and Wagh, V. *The Effect of the Physical and Chemical Characteristics of the Aggregate on Bonding*. Strategic Highway Research Program, National Highway Research Council, Washington, DC., 1991.
- Terrel, R.L. and Al-Swailmi, S. "Final Report on Water Sensitivity of Asphalt-Aggregate Mixtures Test Development." SHRP-A-403. Strategic Highway Research Program, National Research Council, Washington, D.C., 1994.
- Terrel, R.L. and Shute, W.J. Summary Report on Water Sensitivity. SHRP-A/IR-89-003. Strategic Highway Research Program, National Research Council, Washington D.C., 1989.
- Terrel, Ronald and Al-Swailmi, Saleh. "Role of Pessimum Voids Concept in Understanding Moisture Damage to Asphalt Concrete Mixtures." *Transportation Research Record 1386*, TRB, National Highway Research Council, Washington, D.C., pp. 31–37, 1993.
- Thelen, Edmund. "Surface Energy and Adhesion Properties in Asphalt-Aggregate Systems." *Highway Research Board*, Volume 192, pp. 63–74, 1958.
- Tunnicliff, D.G. and R.E. Root. *NCHRP 373: Use of Antistripping Additives in Asphalt Concrete Mixtures Field Evaluation*. Transportation Research Board, National Highway Research Council, Washington, D.C., 1995.
- Tunnicliff, D.G. and Root, R. NCHRP Report 274: Use of Antistripping Additives in Asphaltic Concrete Mixtures. Laboratory phase. TRB, National Highway Research Council, Washington, DC., 1982.
- Williams, M. L., Landel, R. F., and Ferry, J. D., "The Temperature Dependence of Relaxation Mechanism in Amorphous Polymers and Other Glass-Liquids," J. of Am. Chem. Soc., Vol. 77, p. 370, 1955.
- Williams, R.C. and B.D. Prowell, "Comparison of Laboratory Wheel-Tracking Test Results with WesTrack Performance," Transportation Research Record 1681, Transportation Research Board, National Research Council, Washington, D.C., 1999.

- Witczak, M. W., Kaloush, K., Pellinen, T., El-Basyouny, M., Von Quintus, H., Simple Performance Test for Superpave Mix Design. *National Cooperative Highway Research Program (NCHRP)* Report 465, 2002.
- Witczak, M.W., NCHRP Report 547: Simple Performance Tests: Summary of Recommended Methods and Database. Transportation Research Board, National Highway Research Council, Washington D.C., 2005.
- Youtcheff, J.S. and Aurilio, V. "Moisture Sensitivity of Asphalt Binders: Evaluation and Modeling of the Pneumatic Adhesion Test Results." *Canadian Technical Asphalt Association Proceedings*, 1997.
- Zhou, F., Scullion, T. "Preliminary Field Validation of Simple Performance Tests for Permanent Deformation: Case Study" *Transportation Research Board (Transportation Research Record 1832)* pp. 209-216. Washington D.C., 2003.

APPENDIX A. JOB MIX FORMULAS

County: Project Location: Contract Mix Ton Contractor: Material 1/2" cr. quartzite 1/2" crushed 3/8" chip man. sand		20,590	Proportio		ision-Offic uction Lin						
Project Location: Contract Mix Ton Contractor: Material 1/2" cr. quartzite 1/2" crushed 3/8" chip man. sand	I-235 Surf nage: Des Moir	20,590	-				50 - D				
Contract Mix Ton Contractor: Material 1/2" cr. quartzite 1/2" crushed 3/8" chip man. sand	nage: Des Moir	20,590			IM-NHS-2	35-2(506):	503-77		Date:	03/15/06	
Material 1/2" cr. quartzite 1/2" crushed 3/8" chip man. sand	Des Moir	,					Mi	x Design 1	No.:	1BD6-00	1
Material 1/2" cr. quartzite 1/2" crushed 3/8" chip man. sand	-			Course:	Sur	face	,	-	ze (in.):	1/2	_
1/2" cr. quartzite 1/2" crushed 3/8" chip man. sand	-	nes Aspinal	t	Mix'	Type:	HMA 301	M		fe ESAL's	30.000.00	10
1/2" crushed 3/8" chip man. sand		% in Mix			& Location		Type (A or B)	Friction Type	Beds	Gsb	%Abs
3/8" chip man. sand	ASD002	15.0%	В	verest Dell	Rapids, S.I	D.	A	2	T	2.650	0.20
man. sand	A85006	25.0%		M.M.	Ames		A	4	26,28-39	2.585	2.00
man. sand	A85006	20.0%			Ames		Α	4	26,28-39	2.595	1.90
	A85006	30.0%		2 - 2 - 2 - 2	Ames		A	4	26,28-39	2.615	2.20
sand	A77502	10.0%			ohnston		Ā	4	20,20-39	2.650	0.50
Saru	A77502	10.076		In.IVI. 2	Offitscon		. A	-		2.030	0.50
ype and Source of	l Asphalt Bin	der:	PG6	4-22	Bituminou	s Materials	i	l	L1		
					ieve Analy		-				
Material	1"	3/4"	1/2"	2/8"	#4	#8	#16	#30	#50	#100	#200
1/2" cr. quartzite		100	100	83	7.0	1.3	0.8	0.7	0.6	0.5	0.4
1/2" crushed	100	100	93	74	40	23	17	13	11	8.8	7.5
3/8"-chip	100	100	100	90	22	3.0	2.5	1.5	1.2	1.1	1.0
man. sand	100	100	100	100	98	66	39	21	11	4.0	2.4
sand	100	100	100	100	96	87	70	44	13	1.1	0.3
			D II i .			. T			I		
				_	ix Formul		radation				
Upper Tolerance	100	100	100	96	62	40		18			4.9
Comb Grading	100	100	98	89	55	35	24	14	7.7	3.8	2.9
Lower Tolerance	100	100	91	82	48	30		10			0.9
S.A.sq. m/kg	Total	3.60		+0.41	0.22	0.29	0.39	0.41	0.47	0.47	0.95
	Pr	oduction I	imits for	Aggregate	s Approve	ed by the (Contractor	& Produc	cer.		
Sieve 15.09	6 of mix	25.0%	of mix	20.0%	of mix	30.0%	of mix	10.0%	of mix		
Size 1/2" cr	. quartzite	1/2" c	rushed	3/8"	chip	man.	sand	sa	and .		
in. Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
1" 100.0	100.0	100.0	100.0	130.0	100.0	100.0	100.0	100.0	100.0		
3/4" 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		
1/2" 98.0	100.0	90.0	100.0	130.0	100.0	100.0	100.0	100.0	100.0		
3/8" 76.0	90.0	67.0	81.0	83.0	97.0	100.0	100.0	100.0	100.0		
#4 3.0	19.0	33.0	47.0	12.0	26.0	93.0	100.0	90.0	100.0		
#8 0.0	6.1	18.0	28.0	0.0	8.0	58.0	72.0	80.0	90.0		
#30 0.0	4.6	9.0	17.0	0.0	5.0	15.0	25.0	40.0	48.0		
#200 0.0	2.2	5.0	8.5	0.0	1.5	0.0	3.0	0.0	1.0		
							0.0				
Comments:					ials Office						
	s Moines As		Jefferson)	RCE	Choud D.	Marc Lam	oreux		Craig Berr	у	
	Materials	Mark True			Cheryl Ba						
The above target gr epresentative of th		-	limits hav	e been disc	ussed with	and agreed	to by an a	uthorized			
	-00000										
Signed:						Signed:					
		Producer							Contractor		

Form 956 va. 6.5:

Iowa Department of Transportation Highway Division - Office of Materials HMA Gyrato y Mix Design

Courty : Mix Size (i Mix Type:	,	Polk 1/2 HMA 30M	Type A L 2	Contractor : Decign L	IM-NHS-23 Des Moines fe ESAL's :	Asphalt 30,000,000		Contr	1BD6-001 act No.; teported:	77-2352-500 03/15/06
Intended U		Surface			t Location :					
	regate	% in Mix	Source ID		ource Locati		Beds	Gsb	%Abs	FAA
	quartzite.	15.0%	ASD002	Everes	t Dell Rapid	s, S.D.		2.650	0.20	48.0
1/2"	crushed	25.0%	A85006		M.M. Ames		26,28-39	2.585	2.00	48.0
3/8	' chip	20.0%	A85006		M.M. Ames		26,28-39	2.595	1.90	48.0
man	sand	30.0%	A85006		M.M. Amea		26,28-39	2.€15	2.20	48.0
s	and	10.0%	A77502	N	I.M. Johnsto	n		2.650	0.50	41.0
			Job Miy	Formula - Co	umbined Gro	dation (Sias	o Sizain \			
				romma - Co	illibilied Ota	danon (Siev	: Size III.)			
1"	3.4"	1.'2"	3/8"	#4	#8	#16	#30	#50	#100	#2)0
				U	pper Tolerar	ce				
100	100	100	96	62	40		18			4.9
100	100	98	89	55	35	24	14	7.7	3.8	2.9
100	100	91	82	48	30		10			0.9
				L	wer Tolerar	ce				
Asphalt B	inder Sourc	e and Grade:	Bitu	minous Mat	erials	PG64-22				
					Зуганогу Дан	4				
9	6 Asphalt Bi	n.ler .	5.10	5.60	5.62	6.10			Number (of Gyrations
Corr	ected Gmb @	N-Des	2.350	2.381	2.381	2.388			N-	Initial
M	lax. Sp.Gr. (C	imm)	2.494	2.481	2.480	2.467				8
%	Gmm (2) N-	Initial	85.1	86.5	86.5	87.3				Design
9	vGmm @ N-	Max	95.6	97,4	97.4	98.1				109
	% Ai: Voic	İs	5.8	4.0	4.0	3.2			N	-Max
	% VMA		14.6	14.0	14.0	14.2				174
	% VFA		60.5	71.1	71.3	77.4			Gsb for	Angularity
	Film Thickn	ess	10.69	11.81	11.85	13.00			Mc	thod A
	Filler Bit. Ra	ntio	0.75	0.68	0.68	0.62			2	.623
	Gsb		2.612	2.612	2.612	2.612				Abs Ratio
	Gse		2.703	2.711	2.710	2.717				0.88
	Pbe		3.85	4.25	4.27	4.68			Slope of	Compaction
	Pba		1.32	1.43	1.42	1.51			<u>C</u>	lu:ve
%1	New Asphalt	Binder	100.0	100.0	100.0	100.0				12.3
	It Binder Sp.		1.022	1.022	1.022	1.022			Mix Gm	m. Linearity
	% Water A		1.62	1.62	1.62	1.62			(Good
	S.A. m^2/3		3.60	3.60	3.60	3.60			Pb Rar	nge Check
% + 4	Type 4 Agg.		100.0	100.0	100.0	100.0			1.00	
	4 Type 2 or		31.0	31.0	31.0	3:.0			Specific	ation Check
	gularity-met		46	46	46	46				omply
	Flat & Elon		0.1	C.1	0.1	0.1			TSF	Check
	Sand Equiva	_	73	73	73	73				

Disposition: An asphalt content of 5.5% is recommended to start this project.

Data shown it. 5.62% column is interpolated from test data.

Comments: QMA Verification Complies. Final Approval Based Cn Plant Produced Mix.

Copies to:	Des Moines Asphalt	Jefferson RCE	Marc Lamoreux	Craig Berry	
	Central Materials	Mar	k Trueblood	Cheryl Barton	
Mix Designer & Cert.#:	D. Morton	CI-235	Signed :		

Form 956 vsr. 6.5r

1'he

Iowa Department of Transportation Highway Division - Office of Materials IIMA Gyratory Miz. Design

	County:	Polk		Project	IM-NHS-23	5-2(502)12	-03-77	Mix No. :	1BD6-014	:
	Mix Size (:n.):	:/2	Type A	Contractor	Des Moines	Asphalt		Contr	act No. :	
	Mix Type:	HMA 30M	L-4	Design I	ife ESAL'ε :	30M		Date R	reported :	06/13/06
	Intended Use:	Intermedia	e	Proje	ct Location:	I-235 Interm	ediate			
	Aggregate	% in Mix	Source ID	S	ource Locati	on	Bods	Gsb	%Abs	FAA
	1/2" crushed	20.0%	A85006		M.M. Ames		26,28-39	2.585	2.00	48.0
	3/8" chip	29,0%	A85006		M.M. Ames		26,28-39	2.595	1.90	48.0
	man. Sand	30.0%	A85006		M.M. Ames		26,28-39	2.615	2.20	48.0
	sand	6.0%	A77502	1	M.M. Johnsto	ш.		2.650	0.50	41.0
	Classified RAP	15.0%	1-RAP6-1	Des	Moines Asp	halt		2.588	2.22	42.0
			Job Mix F	Formula - C	ombined Gra	dation (Siev	e Size in.)			
	1" 3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
	. 34	1.2	2.0		pper Toleran	11 2 2	#30	#30	#100	#200
	:00 100	100	97	67	43	ioe	20			6
	100 100		90	60	38	26	16	9.3	5.4	40
	:00 100		83	53	33	20	12	9.3	5.4	20
	.00 100	, ,,	65		ower Toleras	ce	12			20
	Asphalt Binder So	urce and Grade:	Bitu	minous Mat		PG64-22				
	Aspirant Delider 50	urec and Grade.	Ditti		Gyratery Dat					
	% Asphalt	Birder	4.70	5.20	5.61	5.70			Number	of Gyrations
	Corrected Gmil		2.319	2.327	2.369	2.378		İ		Iritial
	Max. Sp.Gr	~	2.501	2.484	2.468	2.464			14-	\$
	% Gmm @.:		84.4	84.6	86.9	87.4			N-I	o Design
	%Gmm@		93.9	95.1	97.3	97.8				109
-	% Air V		7.3	6.3	4.0	3.5				-Max
	% VN		15.0	15.2	14.0	13.8			-	174
	% VI		51.6	58.4	71.7	74.7				Angularity
	Film This		7.75	8.84	9.81	10.02				thod A
	Filler Bit		1.17	1.02	0.93	0.90				.614
	Gst		2.501	2.501	2.601	2.601				Abs Ratio
	Gae		2.594	2.696	2.695	2.695).59
	Plos		3.41	3.89	4.32	4.41				Compaction
	Pha		135	1.38	137	137				urve
	% New Asph	-	85.3	86.8	87.8	88.0			_	12.8
	Asphalt Binder		1.020	1.020	1.020	1.020				m Linearity
	% Water		1.97	1.97	1.97	1.97				cellent
	S.A. m^2		4.40	4.40	4.40	4.40				ige Check
	% + 4 Type 4 A	-	88.7	83.7	88.7	88.7			1.00	ine Citeria
	% + 4 Type 2		0.0	0.0	0.0	0.0				ation Check
	Angularity-r				""				_	omply
	% Flat & E		0.9	0.9	0.9	0.9				Check
	Sand Equ	-	89	89	89	89			222	
	Disposit		It content of		*	nded to star	this proise	4		
					is recommit from test data		tins projec	4.		
	Data show				nom test date					
	The ?	6 ADD AC to st	art project is	4.9%						
	Comme	nts : QMA Veri	ication Com	plies. Fina	l Approval I	Based On Pla	nt Produce	d Mix.		
e.										
-	Copies	to : Des Moine		Marshallto		Marc Lamo	reux	Craig Berry		
		Central Ma	terials		Vicky Rink			Cheryl Bar	ton	
	Mix Designer & Cer	t.#: D,M	orton	CI-235		Signed:				

Form 955 ver. 6.5r

				Proportio	n & Proh	uction Lin	its For Ag	ggregates				
Cour	ıty:	Polk		Projec	t No.:	IM-NHS-2	35-2(502)1	1203-77		Date:	06/13/06	
Project L	ccation:	I-235 Inter	mediate	-				Mi	x Design l		1BD6-014	ı
Contract N	dix Toan	age:	27,033		Course:	Interm	ediate		Mix Si	ze (in.):	1/2	
Contra	ector:	Des Moin	es Asphalt		Mix 7	Гуре:	HMA 301	M	Des:gn Li	fe ESAL's	30M	
14-4	-1-1	T-1	0/ :- 3/:			. Ti		Type	Friction	D. I.	0.1	0.11
Mate			% in Mix	1		& Location	1	(A or B)	Type	Beds	Gsb	%Abs
		A35006	20.3%		M.M.			A	4 4	26,28-39	2.585	1.90
3/8" o man. 3		A85006	30.3%		M.M.			A	4	26,28-39		2.20
man. s		A77502	6.0%		M.M. Je			A	7	26,28-39	2.615	0.50
Classifie		1-RAP6-1	15.3%			es Asphalt		^	1		2.588	2.22
Classific	a KAP	1-1041-0-1	13.576		Des Moun	es Aspnait					2.300	4.44
Type and S	curce of A	Asphalt Bin	der:	FG6	4-22	Bituminou	: Materials					
						ieve Analy						
Mate		1"	3/4"	1/2'	3/8"	# 4	#8	#16	#30	#50	#100	#200
1/2" cr		100	100	93	74	40	23	17	13	11	8.8	7.5
3/8"		100	100	100	90	22	3.0	2.5	1.5	1.2	1.1	1.0
man:		100	100	100	100	98	66	39	2.1	11	4.0	2.4
sai		100	100	100	100	96	87	70	- 44	13	1.1	0.3
Classific	d RAP	100	99	93	86	69	52	39	28	18	14	10
											l . i	
											II	
				Prelimin	ary Job M	ix Formul	a Target C	Fradation				
Upper To	olerance	100	100	100	97	67	43		20			6.0
Comb C		100	100	98	90	60	38	26	16	9.3	5.4	4.0
Lower T	-	100	100	91	83	53	33		12			2.0
S A.sq	.m√kg	Total	4.40		+0.41	0.25	0.31	0.42	0.46	0.57	0.66	1.31
		Pr	oduction I	imits for								
Sieve	20.0%	of mix	29.0%	of mix		of mix		of mix		of mix		
Size		rushed	3/8"			San1		nd		ed RAP		
in.	Min	Max	M.in	Max	Min	Max	Min	Max	Min	Max		
1"	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.0	100.0		
3/4"	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	92.0	100.0		
1/2"	90.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	86.0	100.0		
3/3"	67.0	81.0	83.0	97.0	100.0	100.0	100.0	100.0	79.0	93.0	ĺ	
#4	33.0	47.0	12.0	26.0	93.0	100.0	90.0	100.0	62.0	76.0		
#8	18.0	28.0	0.0	12.0	58.0	72.0	80.0	90.0	47.0	57.0		
#30	9.0	17.0	0.0	6.0	15.0	25.0	40.0	48.0	24.0	32.0		
#200	5.5	8.5	0.0	1.5	0.4	3.0	0.0	1.0	8.0	12.0		
Comr												
Copies to:	Des	Maines As	phalt	Marc Lam	oreux		Cheryl Ba	rton	3.6 1 11	Craig Ben	ry .	
			Vicky Rink			Central M			Marshallt	own RCE		
			production	limits hav	e been disc	ussed with	and agreed	l to by an a	uthonzed			
 representat	tive of the	aggregate p	oroducer.									
Signed:							Signed:					
			Producer				_			Contractor	Г	

Form 956 - yer. 6.5r

Iowa Department of Transportation Highway Divisior - Office of Materials HMA Gyratory Mix Design

Courty: Mix Size (in.):	Jasper 3/4	Туре А	Project: NHSN-330-1(24)2R-50 Contractor: Cessford Construction)	Mix No. : Contra	1BD6-007 ct No. :	24003
Mix Type:	HMA 1M	None	Design Life ESAL's: 1M		Date Re	ported:	05/:0/06
Intended Use :	Base		Project Location: la 330 from Ja	isper Coun	y Line N. to US	30	
Aggregate	% ia Mix	Source ID	Source Location	Beds	Gsb	%Abs	FAA
3/4 #235 Lmst.	20.0%	A64004	Cessford - LeGrand	8-27	2.551	2.35	
3/4 #113 Lmst.	30.0%	A64004	Cessford - LeGrand	8-27	2.573	2.30	
Man. Sand Prim.	10.0%	A64004	Cessford - LeGrand	8-27	2.592	2.37	49.3
3/8 Conc. Sand	40.0%	A64502	Martin Marieta - Marshalltown		2.627	0.66	41.0
				8-27			

			Jeb Mix F	Formula - Co	ombined Gra	dation (Siew	e Size in.)			
1"	3/4"	1/2"	2/8*	#4	#8	#16	#30	#50	#100	#200
				U	pper Toleran	ice				
100	100	94	85	67	54		28			5.7
100	100	87	78	60	49	38	24	8.6	4.6	3.7
100	₹3	80	71	53	44		20			1.7
				14	ower Tolera	nice.				

		L	ower Toleran	ce		
Asphalt Binder Source and Grade:	Bi	tuminous Ta	ma	PG58-28		
		(Gyratory Dat	a		
% Asphalt Binder	5.73	6.25	6.31	6.75		Number of Gyrations
Corrected Gmb (a) N-Des.	2.322	2.330	2.333	2.356		N-Initial
Max. Sp.Gr. (Gmm)	2.442	2.421	2.418	2.397		7
% Gmm & N- Initial	89.4	90.5	90.8	92.6		N-Design
%Gmm (#) N-Max	96.0	97.1	97.4	99.2		68
% Air Voids	4,0	3.8	3.5	1.7		N-Max
% VMA	15.6	15.7	15.7	15.2		104
% VFA	68.4	76.1	77.7	88.8		Gsb for Angularity
Film Thickness	10.05	11.29	11.46	12.61		Method A
Filler Bit. Ratio	0.78	0.70	0.69	0.63		2.618
Gsb	2.592	2.592	2.592	2.592		Pba / %Abs Ratio
Gse	2.665	2.661	2.660	2.653		0.61
Pbc	4.71	5.29	5.36	5.90		Slope of Compaction
Pba	1.09	1.03	1.01	0.91		Curve
% New Asphalt Binder	100.0	100.0	100.0	100.0		17.7
Asphalt Binder Sp.Cr. @ 25c	1.028	1.028	1.028	1.028		Mix Gmm Linearity
% Water Abs	1.66	1.66	1.66	1,66		Good
S.A. m*2 / Kg.	4.68	4.68	4.68	4.68		Pb Range Check
% + 4 Type 4 Agg. Or Better	100.0	100.0	100.0	100.0		1.02
% + 4 Type 2 or 3 Agg.	0.0	0.0	0.0	0.0		Specification Check
Angularity-method A	42	42	42	42		Comply
% Flat & Elongated	0.5	0.5	0.5	0.5		TSR Check
Sand Equivalent	91	91	91	91		

Disposition: An asphalt content of 6.3% is recommended to start this project.

Data shown in 6.31% column is interpolated from test data.

Comments: QMA Verification Complies. Final approval based on plant produced mix.

Copies to:	Cessford Construction	Central Materials	Marshalltown RCE	Marc Lamoreux
	Cheryl Barton	Jim Bailey		
Mix Designer & Cert # :	Ted Huisman	CI-515	Signed:	

Fortr 955 ver. 6.5r

				_			mits For A					
	nty:	Jasper			ct No.:		20-1(24)2	K-50		Date:	05/10/06	
			m Jasper Co	unty Line				Mi	x Design1		1BD6-00	7
Contract:		_	15,000		Course:		ase			ze (in.):	3/4	
Contr	actor:	Cessford	Construction	on _.	Mix	Type:	HMA 1N			fe ESAL's	3 IM	
Mat	erial	ldent#	% in Mix		Producer of	& Locatio	on.	Type (A or B)	Friction Type	Beds	Gsb	%Abs
3/4 #23) Limst.	-A64004	20.0%			- LeCirand		A	4	8-27	2.551	2.35
3/4 #11	3 Lmst	A64004	30.0%		Cessford	- LeGrand	l	A	4	8-27	2.573	2.30
Man. Sa	nd Prin.	A64004	10.0%		Cessford	- LeGrand	l	A	4	8-27	2.592	2.37
3/8 Con	ic. Sand	A64502	40.0%	Mar	tin Marietta	- Marsha	Itown	A	. 4		2.627	0.66
Type and S	Source of	Asphalt Bin	der:	PG:	58-28	Bitumino	us Tama					
			Yestist	double American		: A1	lusia N D	naine CT				
Mat	eria1	1"	3/4"	duai Agg	gregates 5 3/8"	#4	lysis - % P #8	#16	arget) #30	#50	#100	#200
	5 Lmst.	100	100	70	45	9.2	3.3	3.0	2.9	2.8	2.7	2.6
	3 1.mst.	100	100	78	62	32	20	15	13	11	10	8.3
Man. Sa		100	100	100	100	97	67	37	17	9.6	5.3	3.6
3/8 Con		100	100	100	100	98	83	73	44	9.2	1.2	0.8
				Prelimir	nary Job M	lix Formu	la Target (Gradation				
Upper T		100	100	94	85	67	54		28			5.7
	Grading	100	100	87	78	60	49	38	24	8.6	4.6	3.7
1000 100000	olerance	100	95	80	/1	53	44		20			1.7
S.A.sq	m/kg	Total	4.68		+0.41	0.25	0.40	0.62	0.68	0.53	0.56	1.21
		Pr	oduction L	imits for	Aggregate	s Approv	ed by the	Contractor	& Produc	cer.		
Sieve	20.3%	of mix	30.0%	of mix	10.0%	of mix	40.0%	of mix				
Size	3/4 #2:	35 Lmst.	3/4 #113	I.mst.	Man. Sa	and Prim.	3/8 Cor	nc. Sand				
in.	Min	Max	Min	Max	Min	Max	Min	Max				
: **	1000	100.0	100.0	100.0	100.0	100.0	100.0	100.0			1	
3/4"	98.0	100.0	98.0	100.0	100.0	100.0	100.0	100.0				
1/2"	65,0	75.0	74.0	84.0	100.C	100.0	100.0	100.0			1	
3/8"	38.0	50.0	56.0	68.0	100.6	100.0	100.0	100.0				
P4	2.0	12.0	27.0	39.0	95.0	100.0	90,0	100.0				
#8	0.0	6.0	16.0	28.0	63.0	75.0	85.0	95.0				
#30	0.0	5.0	7.0	17.0	14.0	24.0	38.0	48.0				
#200	0.0	4.0	5.0	9.0	0.0	4.0	0.0	1.5				
Comr	nents;											
Copies to:	Cess Central N	ford Constr		Marshallt	OWN RCE		Marc Lan	noreux		Cheryl Be	arion	
The above			Jim Bailey production	limits has	ve been disc	cussed with	and scree	d to by an a	uthorized			
		aggregate	-	.,				,				
Signed:							Signed:					
			Producer							Contracto	r	

Form 956 var. 6.5r

Iowa Department of Transportation Highway Division - Office of Materials HMA Gyratory Mix Design

Courty:	Jasper		Project: NHSN-330-1	(24)2R-50	Mix No.:	1BD6-012	
Mix Size (in.):	1/2	Type A	Contractor: Cessford Con	nstruction	Contra	24003	
Mix Type:	HMA 10M	None	Design Life ESAL's:	10M	Date R	eponed:	05/30/06
Intended Use :	Intermedia	ile	Project Location :	a 350 from Jasper Coun:	y Line N. to U	S30	
Aggregate	% in Mix	Source ID	Source Locatio	n Beds	Gsb	%Abs	FAA
Man. Sand S:	c. 25.0%	A64004	Cessford - LeGra	ind 3-27	2.616	2.01	49.0
:/2 #225 Lms	t. 20.0%	A64004	Cessford - LeGra	nd 3-27	2.574	2.30	
72 #220 Lms	t. 30.0%	A64004	Cessford - LeGra	nd 3-27	2.607	1.88	
3/8 Conc. Sar	d 25.0%	A64502	Martin Mariet:a - Mars	halltown	2.627	0.66	41.0
		Ich Miv	Formula - Combined Grad	otion (Siana Sina in)			
		JUD IVIIA	ormana - contonieu Giac	ation (Siere Size III.)			
1" 3/	4" 1/2"	3/8"	#4 #8	¥16 #30	#50	#100	#200
			Upper Tolerano	e			

1"	3/4"	1/2"	3/8"	#4	#8	¥16	#30	#50	#100	#200
				U	pper Toleran	ice				
100	100	100	95	71	51		25			6.3
100	100	99	88	64	46	33	21	8.6	5.2	4.3
100	300	92	81	57	41		17			2.3
				L	ower Toleran	ice				
A control t Dis	ndor Corres	and Ceader	3004	orania area Ter		DC44.22				

		L	ower Tolerar	ice	
Asphalt Binder Source and Grade:	Bi	tuminous Ta	ma	PG64-22	
		(Gyratory Dat	a	
% Asphalt Binder	5.50	5.93	6.00	6.50	Number of Gyration
Corrected Gmb @ N-Des	2.323	2.350	2.355	2.362	N-Initia
Max. Sp.Gr. (Gmm)	2.461	2.448	2.446	2.428	8
% Gmm (# N- Initial	86.3	87.5	87.R	90.2	N-Design
%Gmm @ N-Max	95.7	97.3	97.6	98.6	96
% Air Veids	5.6	4.0	3.7	2.7	N-Max
% VMA	15.8	15.2	15.1	:5.3	152
% VFA	64.6	73.8	75.4	\$2.2	Gsb for Angularity
Film Thickness	9.55	10.36	10.50	11.57	Method A
Filler Bit. Ratio	0.95	0.87	0.86	0.78	2,621
Gsb	2.608	2.608	2.608	2.608	Pba / %Abs Ratio
Gsc	2.678	2.681	2,682	2,682	0.63
Pbe	4.53	4.91	4.98	5.48	Slope of Compactio
Fba	1.03	1.07	1.09	09	Curve
% New Asphalt Binder	100.0	190.0	100.0	100.0	13.1
Asphalt Binder Sp.Cr. @ 25c	1.028	1.028	1.028	1.028	Mix Gmm Linearity
% Water Abs	1.69	1.69	1.69	:.69	Excellent
S.A. nr^2 / Kg.	4.74	4.74	4.74	4.74	Pb Range Check
36 + 4 Type 4 Agg. Or Better	100.0	100.0	130.0	100.0	1.00
% + 4 Type 2 or ! Agg.	0.0	9.0	0.0	0.0	Specification Check
Angularity-method A	43	43	43	43	Comply
%Flat & Elongated	0.8	0.8	0.8	0.8	TSR Check
Sand Equivalent	92	92	92	92	

Disposition: An asphalt cortent of 5.9% is recommended to start this project.

Data shown in 5.93% column is interpolated from test data

Comments: QMA Verification Complies. Final approval based on plant produced mix.

Cop es to:	Cess'ord Construction	Marc Lamoreux	Cheryl Barton	Central Materials	
	Mark Trueblood	Marsha	lltown RCE	Jim Bailey	
Mix Designer & Cert.#:	T Huisman	CI-515	Signed:		

Form 955 ver. 6.51

				_	on & Prod								
Cou	nty:	Jasper		Pioje	ct No.:	NHSN-33	0-1(24)21	R-50		Date:	05/30/06		
Project I	ocation:	la 330 froi	m Jasper Co	unty Line	N. to US30)		Mix	x Design l	No.:	1BD6-01	2	
Contract					Course:		nediate		Mix Si	ze (in.):	1/2		
Contr	actor:	Cessford	Construction	on	Mix	Type:	HMA 10		Design Life ESAL's 10M				
Mat	crial	Ident #	% in Mix		Producer &	& Lecation	n.	Type (A or B)	Friction Type	Beds	Gsb	%Abs	
Man. Sa	and Sec.	A64004	25.0%		Cessford -	 LeGrand 		A	4	8-27	2,615	2.01	
1/2 #22	5 Lmst.	A64004	20.0%		Cessford -	 LeGrand 		A	4	8-27	2.574	2.30	
1/2 #22	0 Lmst	A64004	30.0%		Cessford -	 LeGrand 		A	4	8-27	2.607	1.88	
3/8 Cor	ic. Sand	A64502	25.0%	Mart	tin Marietta	- Marshal	ltown	Α	4		2.627	0.66	
Type and S	Source of	l Asphalt Bin	der:	PG6	4-22	Bituminou	ıs Tama					L	
			Indiai	dual Age	recenter S	iove Anal	neie - % D	assing (Ta	roet)				
Mat	erial	1	3/4"	1/2"	3/8"	#4	9818 - 70 E	#16	#30	#50	#100	4200	
Man. Sa		100	100	100	100	:00	65	35	17	8.0	4.7	3.7	
1/2 #22		100	100	98	73	17	4.5	3.9	3.7	3.5	3.4	3.2	
1/2 #22		100	100	95	78	38	23	18	15	12	10	8.4	
3/8 Con		100	100	100	100	98	88	73	44	92	1.2	0.8	
				Prelimin	ary Job M	ix Formu	a Target (Gradation					
Upper T	olerance	100	100	100	95	71	51		25			6.3	
Comb (Grading	100	100	99	88	64	46	33	21	8.6	5.2	4.3	
Lewer T	elerance	100	100	92	81	57	41		17			2.3	
S.A.sc	m/kg	Total	4.74		+0.41	0.26	0.38	0.54	0.59	0.53	0.64	1.40	
		Pro	oduction L	imits for	Aggregate	s Approv	ed by the (Contractor	& Produ	cer.			
Sieve	25.0%	of mix	20.0%	of mix	30.0%	of mix	25.0%	of mix			Ι		
Size		and Sec.	1/2 #225			0 Lmst.		nc. Sand					
in.	Min	Max	Min	Max	Min	Max	Min	Max					
1"	100.0	100.0	100.0	100.0	100.0	130.0	100.0	100.0					
3/4"	100.0	100.0	100.0	100.0	100.0	130.0	100.0	100.0					
1/2"	100.0	100.0	98.0	100.0	98.0	130.0	100.0	100.0					
3/8"	100.0	100.0	70.0	80.0	74.0	86.0	100.0	100.0			1		
£4	95.0	100.0	13.0	25.0	33.0	43.0	90.0	100.0					
£8	60.0	73.0	0.0	8.0	17.0	27.0	85.0	95.0					
#50	12.0	22.0	0.0	0.0	9.0	18.0	38.0	48.0					
#200	0.0	4.0	0.0	5.0	6.5	9.0	0.0	1.5					
	nents:		s on file in				1						
Copies to:		ford Constr		Marc Lan		2.11461	Cheryl Ba	rton		Central M	merials		
z apracii stor	Mark Tru		Marshallto			Jim Baile							
The above			production	limits hav	e been disc	ussed with	and agree	d to by an a	uthorized				
		aggregate [-5-50	, _, _,					
Signed:			Producer				Sigred:			Contractor			
			Producer							1. contractor	-		

Frem #56 var. 6.5r

Iowa Department of Transportation Highway Divisior - Office of Materials HMA Gyratory Mix Design

Courty:	Jasper		Froject: NHSN-330-1(24)2R-50		Mix No.:	1BD6-015	
Mix Size (in.):	1/2	Type A	Contractor: Cessford Construction		Contra	ct No.:	24003
Mix Type:	HMA 10M	L - 2	Design Life ESAL's: 10M		Date Re	06/.9/06	
Intended Use:	Surface		Project Location: la 350 from Ja	sper County	y Line N. to US	30	
Aggregate	% in Mix	Source ID	Source Location	Beds	Gsb	%Abs	FAA
Manf. Sand Combined	25.0%	A64004	Cessford - LeGrand	3-27	2.601	2.24	49.0
7/2 #220 Lmst.	38.0%	A64004	Cessford - LeGrand	3-27	2.607	1.88	
5/8 5/8 X #4 Slag	12.0%	A70008	Linwood - Montpelier		3.721	1.32	
3/8 Conc. Sand	25.0%	A64502	Martin Marieta - Marshalltown		2.627	0.66	41.0

			Jeb Mix I	ormula - Co	ombined Gra	dation (Siew	e Size in.)			
Į"	3/4"	1/2"	3/8*	#4	#8	#16	#30	#50	#100	#200
				U	pper Toleran	ice				
100	100	100	94	73	54		25			6.5
100	100	99	87	66	49	35	21	9.4	5.5	4.5
100	100	92	80	59	44		17			2.5
				1.	room Tolomor					

		L L	ower Toleran	ce	
Asphalt Binder Source and Grade:	Bit	tuminous Ta	ma	PC64-22	
		(Gyratory Data	a	
% Asphalt Binder	5.50	6.00	6.04	6.50	Number of Gyrations
Corrected Gmb @ N-Des.	2410	2.424	2.425	2.436	N-Initial
Max. Sp.Gr. (Gmm)	2.552	2.527	2.526	2.514	8
% Gmm @ N- Initial	86.7	88.0	\$8.0	88.8	N-Design
%Gmm @ N-Max	95.7	97.2	97.3	98.1	96
% Air Voids	5.6	4.1	4.0	3.1	N-Max
% VMA	15.9	15.9	15.9	15.9	152
% VFA	65.0	74.3	74.8	80.5	Gsb for Angularity
Film Thickness	8.89	10.08	10.15	10.90	Method A
Filler Bit. Ratio	1.03	0.90	0.90	0.84	2,617
Gsb	2.708	2.708	2.708	2.708	Pba / %Abs Ratio
Gsc	2.791	2.784	2.789	2.792	0.69
Pbc	4.43	5.02	5.05	5.43	Slope of Compaction
Pba	1.13	1.04	1.11	1.15	Curve
% New Asphalt Binder	100.0	100.0	100.0	100.0	13.9
Asphalt Binder Sp.Cr. (@ 25c	1.033	1.033	1.033	1.033	Mix Gmm Linearity
% Water Abs	1.60	1.60	1.60	1.60	Good
S.A. m^2 / Kg.	4.98	4.98	4.98	4.98	Pb Range Check
% + 4 Type 4 Agg. Or Better	100.0	100.0	100.0	100.0	1.00
%+4 Type 2 or 3 Agg.	34.2	34.2	34.2	34.2	Specification Check
Angularity-method A	44	44	44	44	Comply
% Flat & Elongated	1.0	1.0	1.0	1.0	TSR Check
Sand Equivalent	91	91	91	91	

Disposition: An asphalt content of 6.0% is recommended to start this project.

Data shown in 6.34% column is interpolated from test data.

Comments: QMA Verification Complies. Final approval based on plant produced mix.

Copies to:	Cessford Construction	Mare Lamoreux	Cheryl Barton	Certral Materia's
	Jim Bailey	Marsh	alltown RCE	
Mix Designer & Cert # ·	Ted Huisman	CI-515	Signed:	

Form 955 ver. 6.5r

				_		ision-Offic uction Lin						
Cor	inty:	Jasper			et No.:	NHSN-330				Date:	36/19/06	
	Location:		m Jasner Co				(2.)-2.		x Design l		1BD6-01	5
	Mix Tonna		28,500		Course:	Surface Mix Siz				1/2		
		-	Construction	on		x Type: HMA 10M Design Life ESAL's 10						
1		11			n 1			Туре	Friction		1	
	terial d Combined	Ident # A64004	% in Mix 25.0%			& Location - LeGrand	1	(A or B)	Type 4	Beds 8-27	Gsb 2.601	%Abs 2.24
1	20 Lmst.	A64004	38.0%			- LeGrand		A	4	8-27	2.607	1.88
	X #4 Slig	A70008	12.0%			Mostpelier		l â	2	0.27	3.721	1.32
	nc. Sand	A64502	25.0%			- Marshall		l â	4		2.627	0.66
3.0 00	iac. Isang	A04302	25.076	viait	iii ividi rena	- Marshan	(OWII	_ ^	'		2.027	0.00
	Type and Source of Asphalt Binder: PG64-22 Bituminous Tama											
Type and	Source of A	sphalt Bin	der:	PG6	4-22	Bitaminou	s Tama					
1			Indivi	dual Aco	regates S	ieve Anah	reis - % P	assino (T	aroet)			-
Ma	terial	1"	3/4"	1/2"	3/8"	#4	#5	#16	#30	#50	#100	#200
fanf. San	d Combine	100	100	100	100	100	74	41	21	11	5.3	3.5
1/2 #22	20 Lmst.	100	100	99	80	41	22	16	13	11	9.8	8.8
5/8 5/8 3	X #4 Sag	100	100	96	55	3.2	1.8	1.6	1.4	1.3	1.1	1.0
3/8 Co	nc. Sard	100	100	100	100	98	88	73	44	9.2	1.2	0.8
1	- 1											
				Prelimin	arv Joh M	lix Formul	a Tamet (Gradation				
I Down	Folerance	100	:00	100	94	73	54	I	25		1	6.5
	Grading	100	100	99	87	66	49	35	21	9,4	5.5	4.5
	Dierance	100	:00	92	80	39	41	33	17	2.7	3.3	2.5
	q, m/kg	Total	4.98		+0.41	0.27	0.40	0.57	0.61	0.58	0.67	1.49
•		Pe	oduction L	imits for	Appregate	s Approve	d by the t	Contractor	& Produc	er.		
Sieve	25.0%		38.0%			of mix		of mix			I	
Size	fanf. Sand					X #4 Slag		nc. Sand				
in.	Min	Max	Min	Max	Min	Max	Min	Max				
1#	100.0	100.0	190.0	100.0	100.0	100.0	100.0	100.0				
3/4"	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0			1	
1/2"	100.0	100.0	58.0	100.0	90.0	100.0	100.0	100.0				
3/8"	98.0	100.0	74.0	86.0	45.0	59.0	100.0	100.0				
74	95.0	100.0	33.0	45.0	0.0	10.2	90.0	100.9				
#8	67.0	78.0	17.0	27.0	0.0	9.0	85.0	95.0				
#30	16.0	26.0	9.0	18.0	0.0	5.0	38.0	48.0				
#200	0.0	4.0	6.5	9.)	0.0	2.5	0.0	1.5	L			-
	ments:						- 10			Central M		
Coples to	Jim Bailey	ord Constr	Marshallto	Marc Lam	ioreux.		Cheryl Ba	iNi		Central M	izterials	
Thoology	e target grad				on benen disse	succeed soith	and serse	d to by sp s	outhorized			
	e target grad ative of the a			mines may	c ocen ust	russed Will	and sgree	a to by an a				
Sign and							Signed:					
Signed:	***		Producer				Signed:		-	Contracto	г	

Form 956 vgr. 6.5r

Iowa Department of Transportation Highway Civision - Office of Materials HMA Gyratory Mix Design

Mix Type: HMA 1M None Interned are Design Life ESAL's: Date Reporter Aggregate % in Mix Source ID 3/4 Stone Source ID 3/4 Stone Source ID 3/4 Stone Source ID 3/4 Stone Martin Marietta Fort Dodge Mine 36-42 2.644 0 3/4 Stone Gravel 37.0% New Pit Becker Gravel Haupert Pit Becker Gravel Haupert Pit 2.526 2	
Mix Type: HMA 1M None Intermediate Design Life ESAL's: Date Reporter Reporter Project Location: On IA 4 From US 30 To IA 175 In Calhoun Comments Date Reporter Reporter Reporter Project Location: On IA 4 From US 30 To IA 175 In Calhoun Comments	6-029
Intended Use : Intermediare Project Location : On IA 4 From US 30 To IA 175 In Calhoun C Aggregate 3/4 Stone 3/4 Stone 25.0% % in Mix Source ID Source Location Beds Gsb % A94002 Source Location Beds Mine 36-42 2.644 0 36-42 2.644 0 3/8 Stone Chips 3/4 Sercen Gravel 37.0% A94002 Martin Marietta Fort Doge Mine 36-42 2.614 0 36-42 2.614 0 3/4 Sercen Gravel 37.0% New Pit Becker Gravel Haupert Pit 2.526 2	. :
Aggregate % in Mix Source ID Source Location Beds Gsb % 3/4 Stone 25.0% A94002 Martin Marietta Fort Dodge Mine 36-42 2.644 0 3/8 Stone Chips 20.0% A94002 Martin Marietta Fort Doge Mine 36-42 2.614 0 3/4 Sercen Gravel 37.0% New Pit Becker Gravel Haupert Pit 2.526 2	ed: 10/02/06
3/4 Stone 25.0% A94002 Martin Marietta Fort Dodge Mine 36-42 2.644 0 3/8 Stene Chips 20.0% A94002 Martin Marietta Fort Doge Mine 36-42 2.614 0 3/4 Screen Gravel 37.0% New Pit Becker Gravel Haupert Pit 2.526 2	ounty
3/8 Stene Chips 20.0% A94002 Martin Marietta Fort Doge Mine 36-42 2,614 0 3/4 Screen Gravel 37.0% New Pit Becker Gravel Haupert Pit 2,526 2	Abs FAA
3/4 Sercen Gravel 37.0% New Pit Becker Gravel Haupert ?it 2.526 2).81 45.0
and the state of t	0.83 45.0
M.C 54 15.00/ W.H X.60	2.53 40.0
1/4 Cone Sand 18.0% Hallett Jefferson 2.614 0	.87 40.0
Job Mix Formula - Combined Gradation (Sieve Size in.)	
." 3/4" 1/2" 3/8" #4 #8 #16 #30 #50 #	100 #200
Upper Tolerance	
100 100 38 93 66 52 25	6.3

				U	pper roieran	ice					
100	100	38	93	66	52		25			6.3	
100	100	91	86	59	47	35	21	10	5.7	4.3	
100	100	34	79	52	42		17			2.3	
				L	ower Toleran	eo					
Aspaalt B	nder Source	and Grade:	F	int Hills Algo	ona	PG 58-28					
				(Gyratory Dat	a					
d ²	Asphalt Bind	er	4.50	5.00	5.47	5.50	6.00		Number of	Gyrations	
Corro	cted Gmb @ N	-Des.	2.321	2.329	2.338	2.339	2.352		N-In	ritial	
Ma	x. Sp.Gr. (Gin	m)	2.471	2.450	2.436	2.435	2.409		7	7	
% (Gmm @ N- Ini	itial	87.9	88.5	89.7	89.8	91.1		N-D	esign	
94	Gmm @ N-Ma	ВX	94.7	96.0	96.8	96.8	98.5		7	6	
	% Air Voids		6.1	4.9	4.0	3.9	2.4		N-M	dax	
	% VMA		14.4	14.5	14.6	14.6	:4.6	117			
	% VFA		57.7	66.0	72.6	73.0	\$3.7		ngularity		
	Film Thickness	s .	7.47	8.57	9.46	9.51	10.85		Meth	od A	
	Filler Dit. Ratio	0	1.16	1.01	6.92	0.91	0.80		74		
	Csb		2.588	2.588	2.588	2.588	2.588		Pba / %A	Abs Ratio	
	Cisc		2.645	2.642	2.642	2.645	2.634		D.:	55	
	Fbc		3.68	4.23	4.66	4.69	5.35		Slope of C	ompaction	
	Pba		0.86	0.81	6.81	0.86	0.70		Cu	rve	
% N	ew Asphalt Ei	nder	100.0	100.0	100.0	130.0	100.0		. 17	1.3	
Asphal:	Binder Sp.Gr.	. @ 25c	1.030	1.030	1.030	1.030	1.030		Mix Gmm	Lirearity	
	% Water Abs		1.46	1.46	1.46	1.46	.46		Go	od	
:	S.A. m ² / Kg.		4.93	4.93	4.93	4.93	4.93		Pb Kang	e Check	
%+41	Гурс 4 Agg. Ог	r Better	100.0	100.0	100.0	130.0	100.0		1.50		
% +	4 Type 2 or 3	Agg.	0.0	0.0	0.0	0.0	0.0		Specificat	ion Check	
. An	gularity-metho	d A	40	-40	40	40	40		Con	nply	
%	Flat & Elonga	ted	1.9	1.9	1.9	1.9	1.9		TSR (Check	
S	and Equivalen	it	78	78	78	78	78				

Disposition: An asphalt content o' 55% is recommended to start this project.

Data shown in 5.47% column is interpolated from test data.

Comments : QMA Verification	 OK. Final approval bases 	d upon plant produced mi	ζ.	
Made with the ad	dition of Washed Sand.			
Copies to : Henningsen Cons	t Marc Lamereux	Cheryl Barton	Central Materials	
Jefferson RCE	Mark I	rueblood-M.Marietta	Craig Berry	

Mix Designer & Cert.#: Scott Schoenrock SW130 Signed : __ Form 955 ver. 6.5r

Proportion & Production Limits For Aggregates														
County: Greene Project No.:						ST2N-4-2	36)2J-3	Date: 10/02/06						
			rom US 30	To IA 175 In Calhoun County				Mix Design No.: 1BD6-029						
Contract Mix Tonnage:					Course: Intermediate					ze (in.):	1/2			
Contra	ictor:	Hennings	en Const		Mix Type: HMA 1M									
Mate	rial	ldent #	% in Mix		Producer & Location (A or B) Type Beds							%Abs		
3/4 Stone A94002 25,0%					Fort Dodge		A	1 ype 4	36-42	Gsb 2.644	0.81			
3/8 Store Chips A94002 20.0%				1	Martin Marietta Fort Doge Mine				4	36-42	2.614	0.83		
		37.0%	Becker Gravel Haupert Pit				A	4		2.526	2.53			
1/4 Corc Sand			18.0%	Hallett Jefferson				A	4		2.614	0.87		
				There is a series of										
T		and the state of t		L		F1: - 11:11		l		L				
Type and Source of Asphalt Binder: PG 58-28 Flint Hills Algona														
į			Indiv	vidual Age	regates S	ieve Analy	sis - % Pa	assing (Ta	arget)					
Mate	aial	1"	3/4"	1/2"	3/8"	#4	#3	#16	#30	#50	#100	#200		
3/4 S	3/4 Stone		100	77	63	36	25	20	17	14	10	7.5		
3/8 Ston	e Chips	100	100	100	100	24	8.0	5.0	3.5	2.5	2.0	1.7		
3/4 Screen Gravel		100	100	91	88	73	59	45	29	14	6.9	5.2		
1/4 Corc Sand		100	100	100	100	100	92	69	32	5.8	1.1	0.8		
				l	L						L			
Preliminary Job Mix Formula Target Gradation														
Upper Te	slerance	100	:00	98	93	66	52		25			6.3		
Comb Grading		100	100	9:	86	59	47	35	21	10	5.7	4.3		
Lower Tolerance		100	:00	84	79	52	42		17		l	2.3		
S.A.sq. m/kg		Total	4.93		+0.41	0.24	0.38	0.58	0.62	0.63	0.69	1.40		
		Pro	nduction l	Limits for	Apprepate	s Approve	d by the (Contractor	& Produc	er.				
Sieve	25.096							of mix	L TOUR					
Size			20.0% of mix 3/8 Stone Chips		37.0% of mix 3/4 Screen Gravel		1/4 Conc Sand							
in.	in delicing of the second		Min	Max	Min	Max	Min	Max		~				
14	100.0	Max 100.0	100.0	106.0	100.0	100.0	100.0	100.0						
3/4"	98.0	100.0	100.0	100.0	98.0	100.0	100.0	100.0						
1/2"	70.0	84.0	100.0	100.0	84.0	98.0	100.0	100.0			l.			
3/8"	56.0	70.0	98.0	100.0	80.0	94.0	100.0	100.0						
+4	26.0	40.0	23.0	370	70.0	84.0	95.0	100.0						
/8	17.0	27.0	4.0	140	59.0	69.0	87.0	97.0						
#50	11.0	19.0	3.0	110	31.0	39.0	28.0	36.0						
#200	4.0	8.0	0.0	5.0	1.7	5.7	0.0	1.5	L					
Comm	nents:													
Copies to. Henningsen Const Dist 1 La					,									
The above	target grad	dations and	production	n limits hav	e been disc	cussed with	and agreed	to by an a	uthorized					
representat	ive of the	aggregate p	roducer.											
Signed: Signed:														
Signed:			Producer				oigicu:			Contractor				
										- annuactor				

Form 956 ver. 6.5t

Iowa Department of Transportation Highway Division - Office of Materials HMA Gytatory Mix Design

County : Mix Size (in.) :		Pottawatttamie 3/4 Type A		Project: IMN-080-:(299)10-0E-78 Contractor: Western Engineering				Mix No. : 4BD6-25 Contract No :			
Mix Type:	HMA 30M	L-2	Design Life ESAL's: 30,000,000				Date Reported: 06/29/06				
Intended Use :	Surface		Projec	t Location:	I-80 from 1.5	M N of US	N, 10 Miles				
Aggrega	te % in Mix	Source ID	Sc	ource Locatio	m.	Eeds	Gsb	%Abs	FAA		
3/4* Ot		ASD010		LG Everest			2.659	0.60	46.0		
MS QT	2 13.0%	ASD010		LG Everest			2.639	0.80	47.0		
3/8" Limes	stone 44.0%	A78002		Schildberg		25B-25E	2.587	1.80	45.0		
AC San		ANE514	I	yman Richie	3		2.610	0.60	39.8		
RAP 23.0%			ABC6-78				2.829	0.47	47.1		
					1	61 1- X					
			Formula - Co	mbined Grad #8	#16	#30	#50	#100	#200		
1"	3/4" 1/2"	3/8"	#4 U	pper Toleran			130	W100			
100	100 97	86	61	40		24			5.8		
100	100 90	79	54	35	26	20	11	5.4	3.8		
100	93 83	72	47 L	30 ower Toleran	ce	16			1.8		
A -h-14 Dindo	er Source and Grade	Flir		naha	PG64-22						
Aspnair Hinde	er Source and Orace.	1.111		Syratory Data							
9/ A-	sphalt Render	4.75	5.00	5.06	5.25	5.75		Number o	f Gyration		
	i Gmb @ N-Des.	2.345	2.350	2.353	2363	2.367		N-Initial			
	Sp.Gr. (Gmm)	2.458	2.453	2.451	2.447	2.430		8			
	n @ N-Initial	86.8	87.0	87.1	87.6	88.2		N-Design			
	m @ N-Max	96.6	97.1	97.3	97.9	98.7		109			
	Air Voids	4.6	4.2	4.0	3.4	2.6		N-Max			
	% VMA	15.7	15.8	15.7	15.5	:5.9		174			
	% VFA	70.8	73.4	74.6	77.9	83.8		Gsb for Angularit			
	n Thickness	10.93	11.33	11.45	11 79	12.90		Me	hod A		
	er Bit. Ratio	0.78	0.75	0.75	0.72	0.66		_	615		
	Osb	2.651	2.651	2.651	2.651	2.651			Abs Ratio		
	Gse	2.639	2.644	2.644	2.647	2.647			0.09		
	Pbe	4.92	5.10	5.15	5.31	5.81	Slope of Compac				
	Pba	-0.18	-0.10	-0.10	-0.06	-0.06	Curve				
% New	Asphal: Binder	82.8	83.8	84.0	34.6	86.0	13.2				
	inder Sp.Gr. @ 25c	1.034	1.034	1.034	1.034	1.034		Mix Gmm Line			
	Water Abs	1.12	1.12	1.12	1.12	1.12			ood		
S.A	. m^2/Kg.	4.50	4.50	4.50	4.50	4.50			ige Check		
% +4 Typ	x 4 Agg. Or Better	100.0	100.0	100.0	100.0	100.0	1	1.00			
%+4T	ype 2 or 3 Agg.	54.8	54.8	54.8	54.8	54.8		_	tion Che		
Angula	arity-method A	45	45	45	45	45	1		omply Charle		
% Fla	it & Elongated	0.8	0.8	0.8	0.8	0.8	[80.4	Check		
San	d Equivalent	81	81	81	81	81		80.4			
Dis	sposition : An aspt	alt content o			ended to star	t this proje	at.				
Data	shown in 5.06%	column is i	interpolatec f	from test data	1.						
	The % ADD AC to:										
Co	omments :										
	Copies to : Western I	agineering	Ames		Cook-2		CBRCE				
	Tupper-2	Lat-	5	File							
Mix Designer	& Cert.#: Marv	in Seavey	SW 160		Signed:	Hary ?	2 / sym	dus	Tech		

Form 955 ver. 6.5r

Iowa Department of Transportation Highway Division Office of Materials Proportion & Production Limits For Aggregates

				rropata	Oli GC 110G	dotton Lin		Se obatos					
County: Pottawatttamie Project No.: IMN-080-1(299)100E-78 Date: 06/29/06													
					36 N, 10 Miles (EBL, WBL) Mix Design No.: 4BD6-25								
Contract N	viix Tonna	ige:	48,438		Course: Surface				Mix Size (in.): 3/4				
Contro	actor:	Western E	Ingineering	5	Mix Type: HMA 30N					fe ESAL/s:	30,000,00	00	
Material Ident # % in Mix				Producer & Location				Type (A or B)	Friction	Beds	Gsb	%Abs	
		ASD010	16.0%			verest		A	2		2.659	0.60	
			10.0%			verest		A	2		2.639	0.80	
3/8" Lin	-	A78002	44.0%	Schildberg				A	4	25B-25E	2.587	1:80	
· AC 8		ANE514	10.0%	Lyman Rickie				Â	4		2.610	0.60	
RA		ALLESIA	20.0%		-	6-78		A	3		2.829	0.47	
100			200074	7,000-76									
Type and S	Source of A	Sphalt Bin	der:	PG6	4-22	Flint Hills	S Ottaha						
Individual Aggregates Sieve Analysis - % Passing (Target)													
Mate	erial	1"	3/4"	1/2*	3/8"	#4	#8	#16	#30	#50	#100	#200	
3/4*	Qtz	100	100	53	20	3.0	2.0	1.6	1.0	0.9	0.8	0.5	
MS	ÇTZ	100	100	100	100	99	82	57	30	21	5.4	1.9	
3/8" Lin	nestone	100	100	99	91	52	19	10	7.7	6.9	6.4	5.6	
AC S		100	100	100	100	100	98	92	80	32	4.4	1.0	
R.A	f.5	100	100	91	80	52	41	32	25	15	7.5	5.1	
								L	J				
Preliminary Job Mix Formula Target Gradation													
									5.8				
Upper Tolerance Comb Grading		100	100	90	79	54	35	26	20	11	5.4	3.8	
Lower Tolerance		100	93	83	72	47	30		16			1.8	
S A.sq. m/kg		Total	450	- 00	+0.41	0.22	0.29	0.42	0.56	0.70	0.66	1.26	
_ JA.sq	.шкв												
			roduction !	Limits for	Aggregate	s Approv	ed by the C	Contractor	& Froduce	ar.			
Sieve	16 (%	ofmix	10.0%	of mix	44.0%	of mix	10.0%	of mix	20.0%	of mix			
Size		* Otz	1	QTZ		mestone	AC	Sand	R	AP .			
in.	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max			
1"	100.0	100.0	100.0	1000	100.0	100.0	100.0	100.0					
3/4"	98.0	100.0	100.0	100.0	98.0	100.0	100.0	100.0	1				
1/2"	53.0	67.0	100.0	100.0	92.0	100.0	100.0	100.0					
3/5"	16.0	30.0	98.0	100.0	84.0	58.0	100.0	100.0					
#4	0.0	5.0	93.0	1000	45.0	59.0	98.0	100.0					
#8	0.0	4.0	74.0	86.0	14.0	24.0	93.0	.100'0					
#30	0.0	3.0	25.0	35.0	3.7	11.7	76.0	84.0					
#200	0.0	2.0	0.0	4.0	0.0	6.0	0.0	3.0	<u> </u>				
Comn	ments:	Signed 9	55's on file	in Dist M	atls office.								
Comments: Signed 555's en file in Dist Matls office. Copies to: Western Engineering Ames Cook-2 CB RCE Tupper-2													
Lab-5 File CB Lab													
The above target gradations and production limits have been discussed with and agreed to by an authorized													
		aggregate i					-9-34						
Province		-Ser Server)											
Signed:							Signed:						
			Producer							Contractor			

Form 956 ver. 6.5r

Iowa Department of Transportation Highway Division - Office of Materia's HMA Gyrafory Mix Design

County:	Dallas		Project: STP-U-5970(607)70-2:	5	Mix No.:	1BD6-016	
Mix Size (in.):	1/2	Type A	Contractor: Des Moines Asphalt		Contra	act No. :	260623
Mix Type:	HMA 1M		Design Life ESAL's: 1M		Date R	eported:	06/20/06
Intended Use :	Intermediat	e	Project Location : Dallas County	, Hose 1	st		
Aggregate	% in Mix	Source ID	Source Location	Beds	Gsb	%Abs	FAA
1/2" crushed	35.0%	A85006	M.M. Ames	26,28-39	2.585	2.00	48.0
man. Sand	16.0%	A85006	M.M. Ames	26,28-39	2.615	2.20	48.0
sand	29.0%	A77502	M.M. Johnston		2.650	0.50	41.0
Classified RAP	20.0%	1-RAP6-1	Des Moines Asphalt		2.588	2.22	42.0

	Job Mix Formula - Combined Gradation (Sieve Size in.)												
l"	3/4"	1/2"	5/8"	#4	#8	#16	#30	#50	#100	#200			
				U	pper Toleran	ice							
100	100	.00	95	78	59		30			7			
100	100	96	88	71	54	40	26	13	6.8	5.0			
HIO	100	89	81	64	49		22			3.0			
				- 14	ower Toleran	100							

		. 170	ower roieran	106	
Asphalt Binder Source and Grade:	Bitumi	inous Materia	als-DM	PC64-22	
			Gyratory Dat	a	
% Asphalt Binder	5.60	5.98	6.10	6.60	Number of Gyrations
Corrected Gmb (d) N-Des.	2 3 5 0	2.361	2.364	2.376	N-Initial
Max. Sp.Gr. (Gram)	2 476	2.459	2.454	2.439	7
% Gmm @ N- Initial	88.6	89.6	90.0	90.8	N-Design
%Gmm (ii); N-Max	95.9	96.9	97.3	98.2	76
% Air Voids	5.1	4.0	3.7	2.6	N-Max
% VMA	15.0	14.9	:4.9	14.9	117
94 VFA	66.0	73.2	75.4	82.7	Gsb for Angularity
Film Thickness	7.37	8.11	8.33	9.11	Method A
Filler Bit. Ratio	1.18	1.07	1.04	0.95	2.627
Gsb	2.609	2.609	2.609	2.609	?ba / %Abs Ratio
GNC	2.705	2.704	2.701	2.705	0.83
Phe	4.29	4.72	4.85	5.30	Slope of Compaction
Pha	1.39	1.37	1.33	1.39	Curve
% New Asphalt Binder	83.7	84.8	\$5.1	86.3	16.8
Asphalt Bunder Sp.Cr. @ 25c	1 020	1.020	1.020	1,020	Mix Gmm Linearity
% Water Abs	1.64	1.64	1.64	1.64	Excellent
S.A. m^2 / Kg.	3.82	5.82	5.82	5.82	Pb Range Check
% + 4 Type 4 Agg. Or Better	77.5	77.5	77.5	77.5	1.00
% + 4 Type 2 or 3 Agg.	0.0	0.0	0.0	0.0	Specification Check
Angularity-method A				i	Comply
% Flat & Elongated	0.9	0.9	0.9	0.9	TSR Check
Sand Equivalent	86	86	86	86	

Disposition: An asphalt content of 6.0% is recommended to start this project.

Data shown in 5.98% column is interpolated from test data.

The % ADD AC to start project is 5.1%

Comments: QMA Verification Complies. Final approval based or plant produced mix.

Copies to	Des Moines Asphalt	Marc Lamoreux	Cheryl Barton	Central Materials
	Craig Berry	Vicky I	Kink	Mark Trueblood
Mix Desigrer & Cert.#:	D.Morton	CI-235	Signed:	

Form 955 ver. 6.5r

Iowa Department of Transportation Highway Division-Office of Materials

				Proportio	on & Prod	uction Lin	nits For Ag	ggregates				
Cou	nty:	Dallas		Projec	ct No.:	STP-U-59	70(607)70	0-25		Date:	06/20/06	
Project I	ocation:	Dallas Cou	anty					Mi	x Design l	No.:	IBD6-016	5
Contract 1	Mix Tonr	tage:			Course:	Intern	nediate		Mix Si	ze (in.):	1/2	
Contr	actor:	Des Mein	es Asphal	t	Mix '	Type:	HMA 1M			fc ESAL's	lM	
Mat	onio 1	Mant #	97 in N.C.		D	0. T	_	Type	Priction	D-4-	C-L	6/ Al-
	rushed	A85006	% in Mix 35.0%		Producer a	Ames	<u> </u>	(A or B)	Гуре	Beds	Gsb 2.585	%Abs 2.00
man.		A85006	16.0%						4 4	26,28-39		2.20
	sanu nd	A77502	25.0%			Ames ohnston		A A	4	26,28-39	2.615 2.650	0.50
Classifi		1-RAP6-1	20.0%					^	"	1		2.22
Classiti	ea KAP	1-KAP6-1	20.0%		Des Morn	es Asphalt					2.588	2.22
Type and S	Source of	Asphalt Bin	der:	PG6	4-22	Bituminou	is Materials	-DM				
			Indiv	idual Agg	regates S	ieve Anal	ysis - % Pa	ssing (T	arget)			
Mat	erial	. 1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
1/2" ci	rushed	100	100	93	74	40	23	17	13	11	8.8	7.5
man.	Sand	100	100	103	100	98	66	39	21	11	4.0	2.4
sa		100	100	100	100	96	87	70	44	13	1.1	0.3
Classifi	ed RAP	100	99	93	86	69	52	39	28	18	14	10
		1					1					
		l l							l			
				Prelimin	ary Job M	ix Formu	a Target G	adation				
Upper T	elerance	100	100	10)	95	78	59		30			7.0
Comb (Grading	100	100	96	. 88	71	- 54	40	26	13	6.8	5.0
Lower T	oleranc;	100	100	85	81	64	49		22			3.0
S.A.sq	m/kg	Total	5.82		+0.41	0.29	0.44	0.66	0.75	0.79	0.83	1.65
		Pro	duction I	imits for	Aggregate	s Approv	ed by the C	Contracto	r & Produ	cer.		
Sieve	35.3%	of mix	16.0%	of mix	29.0%	of mix	20.0%	of mix				
Size	1/2" c	rushed	man.	Sand	sa	nd	Classifi	ed RAP				
in.	Min	Max	Min	Max	Min	Max	Min	Max				
Į,r	100.0	100.0	100.0	100.0	100.C	100.0	98.0	100.0	-			
3/4"	98.0	100.0	100.0	100.0	100.C	100.0	92.0	100.0				
1/2"	90.0	100.0	100.0	100.0	100.C	120.0	86.0	100.0				
3/8"	67.0	81.0	100.0	100.0	98.0	100.0	79.0	93.0				
74	33.0	47.0	93.0	100.0	90.0	100.0	62.0	76.0				
#8	18.0	28.0	58.0	72.0	80.0	90.0	47.0	57.0				
#30	9.0	17.0	15.0	25.0	40.0	48.0	24.0	32.0				
#200	5.5	8.5	0.0	3.0	0.0	1.0	0.8	12.0				
Comr	nents:											
Copies to:	Des	Moines As	phal.	Marc Lam	инсих		Cheryl Bar	rton		Central M	aterials	
	Craig 3er	ry	Vicky Rin	k		Mark Trus	blood					
The above	target gra	dations and	production	limits hav	e been disc	ussed with	and agreed	to by an	authorized			
representat	tive of the	aggregate p	roducer.									
Signed:			Producer				Sigred:			Contractor		
			Producer							Contractor		

Form 956 vw. 6.5r

Iowa Department of Transportation Highway Division - Office of Materials HMA Gyratery Miz. Design

٠	County: Mix Size (m.):	Iowa	Type A	Project : STP-S-CO48(44)5E-48 Contractor : Manatt's Inc.		Mix No. : Contrac	ABD6-603	33 48-C048-044
	Mix Type:	HMA 300K		Design Life ESAL's : 300,000	Date Re	09/07/06		
	Intended Use :	Surface		Project Location : F-52, Powshie	k County	Line to V-52.		
	Aggregate	% in Mix	Source ID	Source Location	Beds	Gab	%Abs	FAA
	1/2" Asphalt Stone	55.0%	A54002	Douds (Keswick Quarry)	13-17	2.555	3.17	49.1
	Manf. Sand	5.0%	A51004	Doud's (Ollie Quarry)	13-18	2.644	0.73	44.3
	Nat. Sand	40.0%	A48508	Marengo Ready Mix (Disternoff)		2.606	0.72	40.0

			Job Mix F	ormula - Co	ombined Gra	dation (Sieve	Size in.)			
1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
				Uj	pper Tolera	ice .				
:00	100	100	93	69	53		29			6.4
100	100	97	86	62	48	38	25	10	5.6	4.4
:00	100	. 90	79	55	43		21			2.4
				L	ower Tolera	tec				
cehalt Bi	nder Source	and Grade:	Rite	minose @ T	Tarres	PG 58-28				

Lower Tolerance										
Asphalt Binder Source and Grade:	Bitu	minous @ T	ama	PG 58-28						
- +			Gyratory Da	4						
% Asphalt Binder	5.35	5.65	5.85	6.35		Number of Gyrations				
Corrected Cmb @N-Dex	2.333	2.347	2.357	2.379	1 1	N-Initial				
Max. Sp.Gr. (Gmm)	2.445	2.433	2.424	2.408		7				
% Gmm @ N- Initial	89.7	90.5	91.1	93.2		N-Design				
%Gmm@ N-Max	95.2	97.3	98.0	99.1		68				
% Air Voids	4.6	3.5	2.8	1.2		N-Max				
% VMA	14.4	14.2	14.0	13.7		104				
%VFA	68.2	75.4	80.3	91.2	1 1	Gsb for Angularity				
Film Thickness	8.43	9.08	9.53	10.46		Method A				
Filler Bit. Ratio	1.01	0.94	0.89	0.81		2.604				
Gab	2.580	2.580	2.580	2.580	1 1	Pba / %Abs Ratio				
Gse	2.552	2.650	2.648	2.650		0.51				
Pbc	4.33	4.66	4.89	5.37		Slope of Compaction				
Pba	1.08	1.05	1.02	1.05		Curve				
% New Asphalt Binder	100.0	100.0	100.0	100.0	l 1	17.4				
Aspha't Binder Sp.Gr. @ 25c	1.027	1.927	1.027	1.027	F I	Mix Grum Linearity				
% Water Abs	2.07	2.07	2.07	2.07	l I	Excellent				
S.A. m*2 / Kg.	5.13	5.13	5.13	5.13		Pb Range Check				
% + 4 Type 4 Agg. Or Better	100.0	100.0	100.0	100.0		1.30				
% + 4 Type 2 or 3 Agg.	0.0	0.0	0.0	0.0		Specification Check				
Argularity-method A	42	42	42	42		Comply				
% Flat & Elongated	3.0	3.0	2.0	3.0		TSR Check				
Sand Equivalent	84	84	84	84						

Disposition: An asphalt content of 5.7% is recommended to start this project.

Data shown in 5.65% column is interpolated from test data.

Comments: Iowa Co. Eng. a Co. Eng. Roger Boulet Area Inspector (Eist.5 Matl's) Copies to : Manatt's Inc. Dennis Lohrer Dist. 6 Lab. Producer's Mix Designer & Cert.#: Brad Karsten CI 391 Signed:

Form 955 ver. 6.5r

Iowa Department of Transportation

Highway Division-Office of Materials roportion & Production Limits For Aggregates

	Proportion & Production Limits For Aggregates												
Coun	ity:	Iowa		Projec	t No.:	STP-S-CO	48(44)5E	3-48		Date:	09/07/05		
Project L	ocation	F-52, Pow	shiek Coun	ty Line to V	7-52.			Mic	x Design 1	No.:	ABD6-60	33	
Contract N			28,050		Course:	Surf	ace		Mix Siz	ze (in.):	1/2		
Contra	ctor:	Manatt's 1	nc.		Mix I	ype:	HMA 300	A 300K Design Life ESAL's 300,000					
								Турс	Friction	- 1		0444	
Mate			% in Mix			Location		(A or B)	Type	Beds	Gsb	%Abs	
1/2" Asph:		A54002	55.0%		7	vick Quarry	0	A	4	13-17	2.555	3.17	
Manf.		A54004	5.0%			ie Quarry)		A	4	13-18	2.644	0.73	
Nat. S	and	A48508	40.0%	Maren	igo Ready l	Mix (Dister	hoff)	A	4		2.606	0.72	
1	1												
										1	'		
1													
								l			L.,	-	
Type and S	ource of A	Asphalt Bin	der:	PG 5	8-28	Biturninou	s@ Tama						
							1 01 7						
						ieve Analy				44.0	41.00	4100	
Mate		1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100 8.4	#200	
1/2" Asph			100	95	74	34	16	11	9.6	9.0		7.3	
Manf.		:00	100	100	99	97	72	52	37	25	11		
Nat. 5	Sand	:00	100	100	100	96	88	72	45	10	1.1	0.5	
						1		l					
1		1						1		1		1	
1													
										1		1	
Ĺ						L	L						
				Prolimin	aru Ioh M	ix Formul	s Target (Gradation					
								T	T 205			6.4	
Upper T		100	100	100	93	69	53		29	10	5.6	4.4	
	Grading	100	100	97	86	- 62	48	38	25	10	3.6	2.4	
	olerance	100	100	90	79	55	43	0.61	0.72	0.63	0.69	1.43	
S.A.sq	. m/kg	Total	5.13		-0.41	0.25	0.39	0.61	1 0.72	0.05	0.05	1,43	
		D	oduction !	imite for	Ageregate	s Ammove	ed by the	Contractor	r & Frodu	cer.			
							1						
Sieve		of mix		of mix		of mix	١.						
Size		halt Stone		Sand		Sand					-		
ir.	Min	Max	Min	Max	Min	Max 100.0					+		
1'	100.0	100.0	100.0	100.0	100.0								
3/4"	100.0	100.0	100.0	100.0	100.0	100.0	1				1		
1/2"	88.0	100.0	98.0	100.0	100.0	100.0	}		}				
3/8"	67.0	31.0	92.0	100.0	98.0	100.0	l						
#4	27.0	41.0	90.0	100.0	89.0	100.0			1				
#3	11.0	21.0	67.0	77.0	83.0	93.0	1				1		
#30	5.6	13.6	33.0	41.0	41.0	49.0							
#230	5.3	9.3	1.1	5.1	0.0	2.5							
Com	ments:	Signatur	es on File	in District	6 Materia	Is Office							
Copies to:		Manatt's In		Iowa Co.			Roger Bo	oulet		Dennis I	ohrer		
,			Dist. 6 La					.5 Matl's)	Produce	er's			
The above	target gra	dations and	d production	n limits hav	e been disc	cussed with	and agree	d to by an	authorized				
		aggregate											
•		3-											
Signed:			Destar			-	Signed:			Contract			
			Decolucies							 Contract 	OF.		

Form 955 ver. 6.5r

Iowa Department of Transportation
Highway Division-Office of Materiak

				Proportio	n & Procu	iction Lim	nts Por A	ggregates				
Coun	ity:	Iowa		Project	No.:	STP-S-CO	48(44)5E	3-48		Date:	09/07/05	
Project L	ocation:	F-52, Pows	hiek Coun	ty Line to V	-52.			Mi	x Design l	vo.:	ABD6-60	33
Contract N	Aix Toms	age:	28,050		Course:	Surf	ace		Mix Siz	ze (in.):	1/2	
Contra	ctor:	Manatt's l	nc.		Mix I	ype:	HMA 300		Design Li	fe ESAL's	300,000	
						T		Гурс	Friction	n - 4-	C-1	0/ 41-
Mate			% in Mix	_		Location		(A or B)	Type	Beds	Gsb 2,555	%Abs 3.17
1/2" Asph		A54002	55.0%		-	vick Quarry	99	A	4	13-17		
Manf.		A54004	5.0%			ie Quarry)		A	4	13-18	2.644	0.73
Nat. S	and	A48508	40.0%	Maren	go Ready l	Mix (Dister	rhoff)	A	4		2.606	0.72
		i .										
										Ì		
1												
						m		L		L		-
Type and S	ource of A	Asphalt Bin	ier:	PG 5	8-28	Biturninou	s@ Tama	-				
			3-45-	danal Asses	to- Ci	ana tanta	min 94 D	accino (T	araeti			
		1"	3/4"	ridual Agg 1/2"	regates 51 3/8"	eve Anaiy #4	#8	assing (1: #16	#30	#50	#100	#200
Mate				95		34	16	11	9.6	9.0	8.4	7.3
1/2" Asph			100 100	100	74 99	97	72	52	37	25	11	3.1
Manf.		:00				96	88	72	45	10	1.1	0.5
Nat. 5	Sand	:00	100	100	100	90	00	/2	43	10	11	0.5
1						İ			ļ			
								1	İ	1		
								1		1		
				ш								
				Prelimin	arv Job M	ix Formul	a Target (Gradation				
1		100	100	100	93	69	53		29		T	5.4
1	olerance		100	97	86	62	48	38	25	10	5.6	4.4
	Grading olerance	100	100	90	79	55	43	1 20	21	1.0	1	2.4
-	. m/kg	Total	5.13	30	-0.41	0.25	0.39	0.61	0.72	0.63	0.69	1.43
S.A.sc	. m/kg	-										
		P	oduction !	Limits for	Aggregate	s Approve	ed by the	Contracto	r & Frodu	cer.		
Sieve	55.00/	of mix		of mix		of mix					T	
Size		halt Stone		C. Sand		Sand						
ir.	Min	Max	Min	Max	Min	Max						
1'	100.0	100.0	100.0	100.0	100.0	100.0						
3/4"	100.0	100.0	103.0	100.0	100.0	100.0					1	
1/2"	88.0	100.0	98.0	100.0	100.0	100.0						
3/8"	67.0	31.0	92.0	100.0	98.0	100.0						
#4	27.0	41.0	90.0	100.0	89.0	100.0	1		1		1	
#3	11.0	21.0	67.0	77.0	83.0	93.0	1		1		1	
#30	5.6	13.6	33.0	41.0	41.0	49.0	1		Ì		1	
#200	5.3	9.3	1.1	5.1	0.0	2.5						
1/250	0.0		-									
	ments:			in District		Is Office	p -			Description	ahrar	
Copies to:		Manatt's In		lowa Co.	Eng.	A To	Roger Bo		Produce	Dennis L	onrer	
			Dist. 6 La			Area Insp				4.5		
		adations and		n limits hav	e been disc	ussed with	and agree	d to by an	authorized			
representa	tive of the	aggregate	producer.									
Signed:							Signed:					
organd:			Producer			-	gmat-			Contracto	or .	

lowa Department of Transportation

Highway Division - Office of Materials

HMA Gyratory Mix Design Project: SPN-69-5(81)--2J-85

			inter opioion) into croose			
County:	STORY		Project: SPN-69-5(81)2J-85	Mi	x No.:	1BD3-010
Mix Size (in.).	1/2		Cuntraulur, MANATTS INC	Contrac	t No.:	85-0995-01
Mb: Type:	HMA 3M		Design Life ESAL's: 3,000,000	Date Res	orted:	5/27/2003
Intended Use:	Surface		Project Location: 6TH & GRAND AVE			
Aggregate,	1/2 CR ASPH EC	A85004	MARTIN MARIETTA AMES	26,28~39	0	45.0%
Source IDs,	1/4 CL CHIP GC	A85009	MARTIN MARIETTA AMES	19~25	(2)	10.0%
Source Loc.,	MANF SAND EC	A85008	MARTIN MARIETTA AMES	26,28~39	@	20.0%
ds & % in Mix:	SAND	A85510	HALLETT MTLS AMES S PIT		@	25.0%

			Job Mi	x Formula	- Combined G	ordation (Sieve	Sizein.)			
1"	3/4"	1/2"	3/8"	#4	#8	#16	#30	W50	≠100	#200
				ı	Jpper Toleran	100				
100	100	100	95	69	52-		24			6.2
100	100	98	88	62	47	33	20	9.2	4.8	4.2
100	100	91	81	55	42		16			2.2
					.ower Toleran	noe				

			Lower Tolera	nce		
Asphalt Binder Source and Grade:		UMINOUS		PG 64-22		
		Gyratory Da	ata		Interpolated	
% Asphalt Binder	5.15	5.65	6.15		5.41	Number of Gyrations
Corrected Gmb @ N-Des.	2.351	2.371	2.376	I	2361	N-Initial
Max. Sp.Gr. (G.,)	2.466	2.454	2.426	I	2.46	7
% G _{ma} @ N-initial	87.6	88.7	89.7	I	88.1	N-Design
% G _{mm} @ N-Max	96.5	97.8	99.1	I	97.1	86
% Air Voics	4.7	3.4	2.1	I	4	N-Max
% VMA	14.6	14.3	14.6	I	14.4	134
% VFA	68	76.3	85.9	I	72.3	Gsb for Angularity
Film Thickness	9.2	10.1	11.6	1	9.7	Method A
Filler Bit. Ratio	0.97	0.89	0.77	i	0.93	2,6
G _{ss}	2.61	2.61	2.61	I .	2.61	Pha/56Abs Ratio
G.,	2.668	2.675	2.662	I	2668	0.47
Pbe	4.34	4.74	5.43	I	4.55	Signe of Compaction
Pba	0.86	0.96	0.77		0.86	Curve
% New Asphalt Binder	100	100	100	I	100	14.3
Asphalt Binder Sp Gr. @25c	1.031	1,031	1.031	1	1.031	Mx Gmm Linearity
% Water Abs	1.83	1.83	1.83		1.83	
S.A. m ² /K ₃ .	4.69	4.69	4,69	1	4.69	Fb Range Check
%+4 Type Agg. Or Better	99	99	99		. 99	
%+4 Type 2 or 3 Agg.	1	1	1	1	1	Specification Check
Angularity-method A	43	43	43		43	
% Flat & Elongated	0.3	0.3	0.3	I .	0.3	TSR Check
Sand Equivelent	86	86	86		86	

Disposition: An asphalt content of 5.40% is recommended to start this project. Data shown in 5.41% column is interpolated from test data.

Comments:					
Copies to:	MANATTS INC	DIST 1 MTLS	DIST 1 LAB	CITY OF AMES	
Mix Designer & Cert#:			Signed:		

Dedham

Form 866 mer, E.] i		led No	Fransportati	on	1			
			i		ay Division - Office	manuscript in the following of the	7				
							f			-	
					HMA Gyratony Mis-	Design				i	
County:		Carroll		D	FM -C014(1		 			and the second second	
Mix Size án	A .	1/2 Typ			Manatt's Inc			Mix No.			
	9:		A.						Contract No.		
Mix Type:		HMA. 1M		the same and the same and	gn Life ESAL		date	***	ate Reported	98/94/0	
ntended Us		Intermediate		P	roject Locatio	n :: Various Loca	tions through	out the County			
A99	pregiate	% in Mix	Source ID		Source Local	ion	Beds	Geb	%Abs	FAA	
1/2" As;	phalt Stone	30.0%	A94002	Martin N	Aarietta (Fort I	Dodge Mine)	36-42	2.615	1.00	45.4	
1/2 Was	shed Chips	10.0%	A34002	Martin N	Narietta (Fort I	Dodge Mine)	36-42	2.527	0,97	45.3	
Mar	of Sand	5.0%	A94002	Martin N	latetta (Fort C	Dodge Mine)	36-42	2601	1.32	45.3	
G	ravel	65.0%	A14510		fenthaler (Lane			2.599	1.30	41.0	
				1							
						-					
	7		Job M	ix Formula - c	ombined Grad	tation (Save Size	in.)				
1"	3/4"	1/2*	3/8"	#4	A8	#16	#30	#50	#100	#200	
				L.	Ipper Tolerand						
100	100	100	94	74	60		34			5.7	
100	100	96	87	67	56	43	30	13	5.2	3.7	
100	100	89	89	60	50		26			1.7	
				L	ower Tolerand	a .					
Sohalt Bind	fer Source and	Grade:		Bituminous N	faterials	PG 58-28					
				1	Gyratory Dat					:	
9	5 Auphalt Bind	lear .	5.5	5.76	5.8	6.6			Number of	Guroffons	
the second second second	cted Gmb @ N		233	2.335	2.336	2.373		i		itial	
	ax. Sp.Gr. (Gm	AND DESCRIPTION OF THE PARTY OF	2.443	2.433	2,431					7	
		STATE OF THE OWNER, WHEN				2.402					
	Green @ N- In		89.5	90	90.1	91.1				N-Dealgn 76	
	Gram @ N-M:	BX.	96.3	97.1	97.2	98.6				THE RESERVE AND ADDRESS OF THE PARTY NAMED IN COLUMN	
	% Air Voide		4.6	4	3.9	2.5			NA.	Max	
	% VMA		1535	15.6	15.8	16				17	
	% VFA		70.2	74.3	74.9	84.6			Geb for A	Ingularity	
	Film Thickness		9	9.53	9.61	11.06			Meth	ned A	
	Filler Bit. Ratio	,	0.77	0.73	0.72	0.63			2.6	i01	
	Gsb		2.604	2.607	2.607	2.607			Pba / %/	Abs Ratio	
	Gse		2.656	2.653	2.654	2.649			0.		
	Pba		4.81	5.1	5.14	5.92			Steps of C		
	Pba		0.73	0.68	0.7	0.62			Cu Cu		
W 1	lew Asphalt Bi	rder	100.0	109.0	100.0	100.0			1.00	.4	
Aspna	t Binder Sp.Gr	~	1.027	1.027	1.027	1.027			Mix Gran		
	% Water Abs		1.18	1.18	1.18	1.18			Ga		
~~~~~	S.A. m^2 / Kg.		5.35	5.35	6.35	5.35			Pb Rang		
	Type 4 Agg. O		100.0	100.0	100.0	100.9			1		
	4 Type 2 or 3	-40	0.0	0.0	0.0	0.0			Specificat	ion Check	
An	gula rity-methor	d A	41	41	41	41			Con	nety	
%	Flat. & Elengat	ed	1.7	1.7	1.7	1.7			ISR	heck	
	Sand Equivalen	t	72	72	72	72					
	Disposition:	An araphait co	ordent of	5.8054	is recommen	fed to start this	project.				
	Data: sitown in		calumn is inte								
	Comments :										
	Copies to :								-		
	ner & Cert. # :	Brad Ka	ersten	CI 391		Signed:					

Form 936 ver.5.0

Iowa Department of Transportation Highway Division - Office of Materials HMA Gyratory Mix Design

x Type: tended Use aggregate, ource IDs, ource Loe., eds & % in Mix:	1/2 CR /		A85006 A85006 A85006 A85510	Proje MARTIN MARTIN MARTIN	Life ESAL'S ect Location MARIETTA MARIETTA MARIETTA MARIETTA TMTLS AM	AMES AMES AMES AMES	et, NW	26,28-39 19-25 26,28-39	G G G	45.0% 10.0% 20.0% 25.0%
				Formula - C	Combined Gra	dation (Siev	e Size in.)			
In .	3/4"	1/2"	3/8"	#4	#8	#16	#30	#50	#100	#200
***					Jpper Tolerar	ice				
100	100	100	95	69	52		24			6.2
160	100	98	88	62	47	33	20	9.2	4.8	4.2
100	10)	91	81	55	42		16			2.2
cobalt Di- 4	lor Gorman	ad Godo	To prese		ower Toleran					
sphalt Bird	er acurce	and Grade:	ыт	UMINOUS 1		PG 64-22				
BC A	sphalt Bind		5 15		ory Data		Interpolated			·
	spnear ∟smoo sd Gamb@iN		5.15 2.342	3.63	6.15		5.55			
	_		2.466	2.362 2.454	2.367	,	2.358	None		
	Sp.Gr. (Gm ım @N-Ini		87.6	88.7	2.426 89.6		2.456	Ivuno	er of Gyratic	ns
	nm @ N-Ma		96.1	97.4	98.8		88.5 97.1		N-Initial 7	
	Air Voids	**	5.0	3.7	2.4				-	
	% VMA		14.9	14.6	14.9		4.0		N-Design 76	
	% VFA		66.2	74.4			14.7			
E3-	m Thickness	.	9.2	10.1	83.7 11.6		72.8 9.9		N-Max 117	
	er Bit Ratio		0.97	0.89	0.77				117	
FU	· Gsb		2.610	2.610	2.610		0.90			
	Gse		2.668	2.675			2610	Orb 4	en annederla	
	Pbe		4.34	4.74	2.662 5.43		2.668		for Angularit	у
	Pba		0.86	0.96		l i	4.66	į	Method A	
% Now	Aspfalt Bir	wher	100.0	100.0	. 0.77		0.86 100.0		2.600	
	inder §p.Gr.		1.031	1.031	1.031			Dha	/%Abs.Ratio	
	Wate: Ahs	tg z.sc .	1.83	1.83	1.83		1.031	PRA		4
	m^2/Kg		4.69	4.69	4.69		4.69		0.47	
	Type 4 Ag		- 99	99	99		99			
	ype 2 or 3 /		1	1	1 1	,	1	Slore	of Compacti	on
	arity-method		43	43	43	1	43	Store	Curve	SOLE.
_	t & Elongat		0.3	0.3	0.3		0.3		14.1	
	d Equivalen		86	86	86		86		2718	
	sposmon:					adad to otro	this are to a	77.	ad a h	2000
	•		It content of			nded to start	unis project.	larg	27 (1/4	11/25 G
Data	shown in	5.55%	octumn is in	iterpolated fr	rom test data.		#	7arg	1-75	(68)
Co	numents - T	inal graves	al baseston	plant produc	ant mix			8 = 45		
	· univ.ita . I		en onsou oil	pran produc	od sux.					

### Form 955 ver.5.0

Iowa Department of Transportation Highway Division-Office of Materials

				Proporti	on & Pro	luction Lir	mits For A	ggregate	5			
Cou	inty:	STORY		Proje	ct No.:	BR-810-0	(83)7A-8	5		Date:	05/28/03	
Project I	Location:	13TH ST	REET					M	fix Design i	Nc.:	IBD3-008	
Centract	Mix Tonn	age:	3,000		Course:	Sur	rface		Mix Si	ze (in.):	1/2	
Cont	ractor:	MANAT	TS INC		Mix	Type:	HMA 1M	1	Design Li	fe ESAL's	:1,000,000	
Mai	terial	Ident ≠	% in Mix	ζ		Producer	& Location	n		Beds	Gsb	%Ats
1/2 CR	ASPH EC	A85006	45.0%	MARTIN	MARIET	A AMES				26,28-39	2.521	1.85
1/4 CL (	CHIP GC	A85006	10.0%	MARTIN	MARIET	A AMES				19-25	2.500	1.80
MANES	SANDEC	A85006	20.0%	MARTIN	MARIET	A AMES				26,28-39	2.623	2,26
SA	.ND	A85510	25.0%	HALLET	T MTLS A	MES S PI	Τ .				2.583	1.48
l		l		1								
			İ									
				Ι΄								- 1
Type and	Source of A	Asphalt Din	der:	PG	64-22	BITUMIN	ICUS MTL	3				
					~ ~	sieve Anal						- 1
	erial	1"	3/4"	1/2*	3/8"	#4	#8	#16	#30	#50	#100	#200
	ASPH EC	100	100	95	73	31	21	15	13	. 10	8.4	8.0
	CHIP GC	100	100	100	100	42	4.0	3.5	3.0	2.5	1.8	1.5
	ANDEC	100	100	100	100	93	72	43	23	. 11	3.6	2.0
SA	ND	100	100	100	100	93	89	69	37	9.1	0.4	0.2
			,		l	l				1		- 1
					l	ļ.			1			
					l	l						
		l	l,	l		L	l					
				Prelimin	ary Job N	fix Formu	la Target C	radation				
Tion on T	olerance	1				,						
	irading	100	100 100	100 98	95 88	69	52 47		24	9.2	4.8	6.2 4.2
	olerance	100	100	91	81	55	42	33	16	9.2	4.6	2.2
	. m/kg	Total	4.69	91	+0.41	0.27	0.39	0.62	0.77	0.80	1.00	2.23
5.11.00	. III/Kg	10141	4.09		10,41	0.27	0.55	0.02	0.77	0.00	1.00	2.23
		. Pr	oduction 1	Limits for	Aggregat	s Approv	ed by the O	Contracto	r & Produc	er.		
Sieve	45 096	of mix	10.096	of mix	20.0%	of mix	25.0%	of mix				
Size		SPH EC		CHIP OC	1	ANDEC		ND				- 1
in.	Min	Max	Min	Mas	Min	Max	Min	Max				
1"	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0				-
3/4"	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0				
1/2"	90.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0				
3/8"	67.0	79.0	98.0	100.0	98.0	100.0	98.0	100.0	;			
#4	24.0	36.0	35.0	49.0	95.0	100.0	91.0	100.0				- 1
#8	16.0	26.0	0.0	7.0	66.0	80.0	84.0	94.0	İ			- 1
#30	10.0	18.0	0.0	5.0	19.0	28.0	33.0	41.0				
#200	6.0	10.0	0.0	2.5	0.0	3.0	0.0	2.2				. [
							-74					
. Comn	٠,				l Materia	s Office						
Copies to:	MA	ANATTSI	NC	DIST 1 M	TLS.	OUTERS	DIST 1 LA	В		SNYDER	& ASSOC.	
						CHERYL						
					s have bee	n discusse	d with and	l agreed 1	to by an aut	thcrized		
representa	tive of the	e aggregat	e produce	ir.								
Signed:							Signed:					
orgined:			Producer				signed:			Contractor		
			r-roducer				_			Contracto	Г	

## APPENDIX B. DYNAMIC MODULUS TEST RESULTS

The results of the dynamic modulus test and phase angle for the control group are presented in Tables B-1 and B-2, respectively. The results for the conditioned group are presented in Tables B-3 and B-4.

Table B-1. Dynamic modulus results for control mixes (GPa)

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	Mean	4	12.47	12.26	10.66	10.97	10.43	9.07	8.33	7.78	6.55
6N	Mean	21	5.70	5.20	4.79	4.17	3.59	2.76	2.45	2.22	1.67
6N	Stdv	4	1.63	0.78	2.29	0.74	0.74	0.75	0.74	0.74	0.73
6N	Stdv	21	0.66	0.60	0.60	0.56	0.54	0.47	0.43	0.40	0.33
6N	CoV (%)	4	13.1	6.3	21.5	6.8	7.1	8.2	8.9	9.6	11.2
6N	CoV (%)	21	11.5	11.6	12.5	13.4	15.1	17.1	17.4	18.1	19.9
218	Mean	4	14.02	13.31	12.78	12.01	10.96	9.96	9.20	8.68	7.36
218	Mean	21	6.37	5.75	5.34	4.63	3.59	2.95	2.64	2.40	1.73
218	Stdv	4	1.31	1.14	1.01	0.91	0.99	0.82	0.78	0.65	0.50
218	Stdv	21	0.34	0.29	0.28	0.25	0.21	0.18	0.17	0.15	0.12
218	CoV (%)	4	9.3	8.6	7.9	7.6	9.0	8.2	8.5	7.5	6.7
218	CoV (%)	21	5.3	5.0	5.2	5.3	6.0	6.2	6.5	6.4	6.9
235I	Mean	4	14.13	13.35	12.62	11.67	11.04	9.37	8.50	7.86	6.43
235I	Mean	21	5.90	5.34	4.89	4.18	3.44	2.62	2.25	2.00	1.46
235I	Stdv	4	0.78	0.59	0.55	0.53	0.51	0.45	0.42	0.37	0.36
235I	Stdv	21	0.33	0.29	0.27	0.24	0.21	0.17	0.14	0.13	0.09
235I	CoV (%)	4	5.5	4.4	4.4	4.5	4.6	4.8	5.0	4.7	5.5
235I	CoV (%)	21	5.6	5.4	5.6	5.7	6.1	6.5	6.2	6.7	6.4
235s	Mean	4	13.83	13.02	12.30	11.40	10.32	9.22	8.49	7.92	6.62
235s	Mean	21	6.13	5.50	5.09	4.40	3.38	2.81	2.45	2.21	1.64
235s	Stdv	4	4.36	4.23	4.05	3.92	3.89	3.59	3.39	3.20	2.80
235s	Stdv	21	2.13	1.95	1.84	1.63	1.34	1.12	1.00	0.92	0.67
235s	CoV (%)	4	31.5	32.5	32.9	34.4	37.7	39.0	39.9	40.4	42.3
235s	CoV (%)	21	34.8	35.5	36.2	37.1	39.7	39.9	40.8	41.4	40.7

**Table B-1. (continued)** 

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
330B	Mean	4	13.54	12.66	12.02	11.21	10.28	9.22	8.58	8.00	6.57
330B	Mean	21	5.56	4.99	4.58	3.93	2.96	2.40	2.12	1.90	1.32
330B	Stdv	4	1.02	0.85	0.78	0.74	0.75	0.66	0.61	0.58	0.49
330B	Stdv	21	0.48	0.39	0.37	0.33	0.26	0.22	0.18	0.18	0.13
330B	CoV (%)	4	7.6	6.7	6.5	6.6	7.2	7.1	7.1	7.2	7.4
330B	CoV (%)	21	8.6	7.9	8.0	8.4	8.8	9.0	8.7	9.4	9.8
330I	Mean	4	16.87	16.38	15.57	14.66	14.00	12.22	11.28	10.47	8.72
330I	Mean	21	7.57	6.77	6.24	5.42	4.63	3.54	3.10	2.76	1.96
330I	Stdv	4	0.93	0.47	0.39	0.37	0.35	0.34	0.32	0.27	0.26
330I	Stdv	21	0.29	0.25	0.24	0.19	0.18	0.14	0.12	0.10	0.08
330I	CoV (%)	4	5.5	2.9	2.5	2.5	2.5	2.8	2.8	2.6	2.9
330I	CoV (%)	21	3.8	3.7	3.9	3.5	3.8	3.9	3.9	3.7	3.9
330s	Mean	4	16.19	15.56	14.94	14.19	13.82	12.39	11.56	10.92	9.65
330s	Mean	21	9.83	9.08	8.47	7.45	6.71	5.22	4.38	3.82	2.79
330s	Stdv	4	1.17	1.16	1.11	1.12	1.11	1.10	1.05	0.98	1.04
330s	Stdv	21	0.34	0.32	0.30	0.26	0.24	0.22	0.21	0.22	0.19
330I	CoV (%)	4	7.2	7.4	7.4	7.9	8.0	8.9	9.1	9.0	10.8
330I	CoV (%)	21	10.4	11.1	11.5	12.0	14.4	17.6	20.2	23.4	28.3
ALT	Mean	4	20.66	19.64	19.35	18.32	17.61	15.69	14.62	13.79	11.96
ALT	Mean	21	10.70	9.60	8.95	7.96	6.98	5.57	4.88	4.45	3.35
ALT	Stdv	4	0.68	0.95	0.76	0.74	0.73	0.76	0.82	0.83	0.85
ALT	Stdv	21	0.75	0.65	0.61	0.62	0.57	0.55	0.53	0.52	0.46
ALT	CoV (%)	4	3.3	4.8	3.9	4.1	4.1	4.8	5.6	6.0	7.1
ALT	CoV (%)	21	7.0	6.8	6.9	7.8	8.1	9.8	10.8	11.8	13.8

**Table B-1. (continued)** 

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
Ded	Mean	4	9.36	8.57	8.06	7.28	6.32	5.44	5.03	4.62	3.25
Ded	Mean	21	3.31	2.92	2.64	2.19	1.58	1.28	1.09	0.96	0.68
Ded	Stdv	4	0.62	0.51	0.53	0.51	0.43	0.40	0.35	0.35	0.79
Ded	Stdv	21	0.26	0.23	0.21	0.18	0.14	0.11	0.09	0.08	0.05
Ded	CoV (%)	4	6.6	6.0	6.5	7.0	6.8	7.3	7.0	7.5	24.3
Ded	CoV (%)	21	7.8	7.9	7.8	8.2	8.6	8.8	8.3	8.3	7.9
F52	Mean	4	12.71	11.76	11.16	10.23	9.50	7.91	7.15	6.64	5.32
F52	Mean	21	5.02	4.50	4.14	3.51	2.77	2.08	1.82	1.60	1.16
F52	Stdv	4	0.64	0.54	0.42	0.38	0.37	0.31	0.29	0.27	0.26
F52	Stdv	21	0.24	0.19	0.19	0.19	0.18	0.13	0.12	0.13	0.11
F52	CoV (%)	4	5.1	4.6	3.7	3.7	3.8	3.9	4.1	4.1	4.9
F52	CoV (%)	21	4.8	4.3	4.7	5.3	6.4	6.4	6.9	7.9	9.4
HW4	Mean	4	12.85	11.90	11.30	10.43	9.83	8.33	7.70	7.13	5.88
HW4	Mean	21	7.26	6.48	5.85	4.81	4.08	2.74	2.08	1.68	1.07
HW4	Stdv	4	1.85	2.01	1.96	1.95	2.04	2.03	1.86	1.78	1.81
HW4	Stdv	21	0.80	0.74	0.70	0.62	0.38	0.26	0.20	0.22	0.14
HW4	CoV (%)	4	14.4	16.9	17.3	18.7	20.8	24.3	24.2	25.0	30.8
HW4	CoV (%)	21	44.5	47.4	50.7	53.8	49.0	58.3	44.7	51.2	41.8
I80B	Mean	4	16.20	15.49	14.86	13.95	13.39	11.78	10.95	10.25	8.61
I80B	Mean	21	7.98	7.22	6.67	5.82	5.07	3.89	3.38	3.01	2.13
I80B	Stdv	4	0.35	0.42	0.40	0.31	0.41	0.40	0.39	0.35	0.32
I80B	Stdv	21	0.32	0.24	0.23	0.22	0.21	0.19	0.16	0.13	0.09
I80B	CoV (%)	4	2.2	2.7	2.7	2.2	3.1	3.4	3.6	3.4	3.7
I80B	CoV (%)	21	4.0	3.4	3.4	3.8	4.2	4.8	4.6	4.2	4.3

**Table B-1. (continued)** 

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
I80s	Mean	4	17.74	17.16	16.41	15.57	14.56	13.51	12.51	11.84	10.43
I80s	Mean	21	9.08	8.26	7.71	6.88	5.76	4.89	4.42	4.04	3.09
I80s	Stdv	4	1.09	1.04	0.99	0.92	0.83	0.92	0.79	0.82	0.90
I80s	Stdv	21	0.85	0.77	0.72	0.69	0.68	0.63	0.59	0.54	0.49
I80s	CoV (%)	4	6.2	6.1	6.0	5.9	5.7	6.8	6.3	6.9	8.6
I80s	CoV (%)	21	9.3	9.3	9.4	10.1	11.8	12.8	13.3	13.4	15.9
Jewell	Mean	4	15.05	14.46	13.75	12.93	11.94	10.83	10.06	9.43	7.90
Jewell	Mean	21	6.75	6.11	5.67	4.92	3.84	3.18	2.84	2.57	1.83
Jewell	Stdv	4	0.64	0.67	0.64	0.60	0.62	0.64	0.60	0.58	0.51
Jewell	Stdv	21	0.39	0.34	0.35	0.33	0.29	0.26	0.24	0.24	0.20
Jewell	CoV (%)	4	4.3	4.6	4.6	4.7	5.2	5.9	5.9	6.1	6.5
Jewell	CoV (%)	21	5.8	5.6	6.1	6.7	7.5	8.2	8.5	9.3	10.7
NW	Mean	4	14.82	14.08	13.31	12.43	11.52	10.31	9.58	8.94	7.32
NW	Mean	21	6.17	5.50	5.05	4.33	3.31	2.70	2.39	2.14	1.48
NW	Stdv	4	0.64	0.76	0.70	0.71	0.71	0.69	0.63	0.58	0.52
NW	Stdv	21	0.43	0.36	0.34	0.30	0.26	0.22	0.19	0.18	0.13
NW	CoV (%)	4	4.3	5.4	5.3	5.7	6.2	6.7	6.6	6.5	7.1
NW	CoV (%)	21	6.9	6.6	6.8	7.0	7.7	8.1	8.1	8.3	8.8
Rose	Mean	4	16.39	16.34	15.65	14.96	14.47	13.07	12.29	11.66	10.33
Rose	Mean	21	8.86	8.13	7.60	6.83	6.21	5.09	4.55	4.18	3.30
Rose	Stdv	4	0.94	0.99	0.79	0.76	0.79	0.68	0.66	0.61	0.55
Rose	Stdv	21	0.49	0.47	0.44	0.48	0.54	0.55	0.50	0.47	0.44
Rose	CoV (%)	4	5.7	6.1	5.1	5.1	5.5	5.2	5.3	5.2	5.4
Rose	CoV (%)	21	5.5	5.8	5.8	7.0	8.7	10.7	10.9	11.2	13.3

Table B-2. Phase angle values for control mixes

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	Mean	4	3.97	7.24	7.80	9.48	10.32	11.40	12.44	13.22	15.07
6N	Mean	21	14.38	16.26	17.44	19.56	21.39	24.18	26.14	28.87	31.92
6N	Stdv	4	2.18	0.81	1.20	0.83	1.12	1.05	1.02	1.43	1.43
6N	Stdv	21	1.34	1.28	1.28	1.46	2.12	2.10	1.87	2.55	1.86
6N	CoV (%)	4	54.9	11.2	15.4	8.8	10.9	9.3	8.2	10.8	9.5
6N	CoV (%)	21	9.3	7.9	7.3	7.4	9.9	8.7	7.2	8.8	5.8
218	Mean	4	5.23	6.95	7.81	9.23	9.85	10.99	12.25	13.62	15.60
218	Mean	21	14.68	16.55	17.85	20.28	23.45	25.39	27.17	32.60	35.79
218	Stdv	4	1.14	0.52	0.40	0.60	0.64	0.64	0.35	0.53	1.00
218	Stdv	21	0.67	0.43	0.39	0.47	2.04	0.76	0.85	1.16	1.38
218	CoV (%)	4	21.9	7.5	5.1	6.5	6.5	5.8	2.8	3.9	6.4
218	CoV (%)	21	4.6	2.6	2.2	2.3	8.7	3.0	3.1	3.5	3.9
235I	Mean	4	6.30	8.31	9.41	10.97	12.09	13.75	14.58	15.97	18.03
235I	Mean	21	16.23	18.08	19.40	21.69	24.98	26.97	30.61	32.54	33.28
235I	Stdv	4	0.31	0.32	0.27	0.26	0.69	0.39	0.38	0.51	0.58
235I	Stdv	21	0.40	0.21	0.23	0.33	1.56	1.04	2.09	1.67	1.91
235I	CoV (%)	4	4.9	3.9	2.9	2.4	5.7	2.8	2.6	3.2	3.2
235I	CoV (%)	21	2.4	1.2	1.2	1.5	6.2	3.9	6.8	5.1	5.7
235s	Mean	4	8.03	9.56	10.59	12.32	13.23	14.28	16.22	17.05	18.89
235s	Mean	21	16.00	17.80	18.84	20.92	23.97	26.00	29.01	30.60	32.50
235s	Stdv	4	3.71	3.91	4.08	4.49	5.21	5.47	7.33	7.58	6.79
235s	Stdv	21	3.21	3.10	2.73	2.39	3.91	2.77	4.08	2.52	1.67
235s	CoV (%)	4	46.2	40.9	38.5	36.4	39.4	38.3	45.2	44.5	36.0
235s	CoV (%)	21	20.1	17.4	14.5	11.4	16.3	10.7	14.1	8.2	5.1

Table B-2. (continued)

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
330B	Mean	4	6.29	6.86	8.02	9.56	10.44	11.69	12.75	14.05	16.73
330B	Mean	21	15.49	17.60	19.05	21.68	25.17	26.87	33.16	35.97	37.59
330B	Stdv	4	0.70	0.21	0.11	0.04	0.49	0.43	0.71	0.62	1.76
330B	Stdv	21	0.78	0.56	0.51	0.67	1.45	0.99	2.86	2.18	2.95
330B	CoV (%)	4	11.2	3.1	1.4	0.5	4.6	3.7	5.6	4.4	10.5
330B	CoV (%)	21	5.0	3.2	2.7	3.1	5.8	3.7	8.6	6.1	7.8
330I	Mean	4	4.81	6.45	7.33	8.68	9.65	11.10	11.64	12.46	14.29
330I	Mean	21	14.32	16.08	17.33	19.75	23.59	25.45	28.46	30.70	33.29
330I	Stdv	4	1.30	0.22	0.30	0.34	0.19	0.76	0.38	0.28	0.75
330I	Stdv	21	0.26	0.23	0.23	0.33	0.83	0.49	1.65	1.20	1.47
330I	CoV (%)	4	26.9	3.4	4.0	3.9	2.0	6.8	3.3	2.3	5.3
330I	CoV (%)	21	1.8	1.4	1.4	1.7	3.5	1.9	5.8	3.9	4.4
330s	Mean	4	4.51	5.58	6.26	7.27	7.69	8.71	8.88	9.39	10.33
330s	Mean	21	12.25	13.63	14.42	15.90	17.87	19.75	20.69	22.60	23.28
330s	Stdv	4	0.89	0.37	0.41	0.71	0.79	0.88	0.86	1.37	1.30
330s	Stdv	21	1.55	1.04	1.13	1.03	1.75	2.57	2.13	2.20	0.73
330I	CoV (%)	4	19.7	6.6	6.5	9.8	10.2	10.1	9.7	14.6	12.6
330I	CoV (%)	21	7.7	4.8	5.0	4.2	6.2	8.4	6.6	6.1	2.0
ALT	Mean	4	2.57	5.33	6.50	7.77	8.38	10.00	10.40	10.99	12.51
ALT	Mean	21	12.10	13.87	15.16	17.34	19.88	22.06	24.54	26.91	28.76
ALT	Stdv	4	2.39	1.09	0.46	0.69	0.90	0.54	0.91	0.94	0.98
ALT	Stdv	21	0.73	0.91	0.87	1.04	1.94	1.22	2.67	2.40	1.16
ALT	CoV (%)	4	92.9	20.5	7.1	8.9	10.8	5.4	8.7	8.6	7.8
ALT	CoV (%)	21	6.1	6.6	5.7	6.0	9.7	5.5	10.9	8.9	4.0

**Table B-2. (continued)** 

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
Ded	Mean	4	9.21	11.11	12.23	14.21	15.51	16.86	18.58	21.03	25.66
Ded	Mean	21	19.82	21.93	23.18	25.36	28.18	30.15	33.05	35.28	38.25
Ded	Stdv	4	0.50	0.56	0.54	0.50	0.84	0.34	0.65	1.39	3.50
Ded	Stdv	21	0.45	0.71	0.58	0.62	1.29	0.65	0.78	1.20	1.06
Ded	CoV (%)	4	5.5	5.1	4.4	3.5	5.4	2.0	3.5	6.6	13.6
Ded	CoV (%)	21	2.3	3.3	2.5	2.5	4.6	2.2	2.3	3.4	2.8
F52	Mean	4	6.59	9.68	10.73	12.48	13.63	15.36	17.36	19.00	22.43
F52	Mean	21	18.90	20.39	21.56	23.96	28.59	29.57	31.78	33.86	35.11
F52	Stdv	4	2.28	0.37	0.41	0.50	0.99	0.55	1.02	1.17	0.74
F52	Stdv	21	0.87	0.84	0.74	0.79	1.69	1.38	0.85	0.82	1.71
F52	CoV (%)	4	34.6	3.9	3.8	4.0	7.2	3.6	5.9	6.2	3.3
F52	CoV (%)	21	4.6	4.1	3.4	3.3	5.9	4.7	2.7	2.4	4.9
HW4	Mean	4	7.01	8.58	9.82	11.22	12.28	13.83	14.84	16.90	20.07
HW4	Mean	21	16.48	17.85	18.52	19.53	22.57	22.78	23.31	25.12	25.60
HW4	Stdv	4	1.35	1.63	1.68	2.00	2.38	2.64	3.09	4.37	5.67
HW4	Stdv	21	4.55	3.78	3.58	2.70	1.97	1.19	1.75	2.61	3.68
HW4	CoV (%)	4	19.2	19.0	17.1	17.8	19.4	19.1	20.8	25.9	28.3
HW4	CoV (%)	21	17.5	13.9	13.1	9.7	6.0	3.7	5.5	7.8	11.8
I80B	Mean	4	4.27	6.08	7.36	8.61	9.24	10.82	11.97	12.92	15.19
I80B	Mean	21	13.26	15.54	16.87	19.26	21.70	24.49	27.78	29.53	32.50
I80B	Stdv	4	1.39	0.54	0.18	0.36	0.65	0.50	0.71	0.45	1.23
I80B	Stdv	21	0.72	0.50	0.51	0.50	1.06	0.82	1.61	0.92	1.92
I80B	CoV (%)	4	32.4	8.8	2.5	4.2	7.1	4.6	5.9	3.5	8.1
I80B	CoV (%)	21	5.4	3.2	3.0	2.6	4.9	3.3	5.8	3.1	5.9

**Table B-2. (continued)** 

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
I80s	Mean	4	2.94	5.09	6.12	7.27	8.07	9.24	9.45	10.21	11.10
I80s	Mean	21	11.22	13.20	14.37	16.50	17.95	20.50	22.00	24.77	28.76
I80s	Stdv	4	0.79	0.61	0.45	0.50	0.84	0.86	0.74	0.76	0.91
I80s	Stdv	21	0.97	0.90	0.91	1.06	1.23	1.16	1.65	1.97	1.68
I80s	CoV (%)	4	26.9	12.1	7.4	6.9	10.4	9.3	7.8	7.5	8.2
I80s	CoV (%)	21	8.6	6.8	6.3	6.4	6.9	5.6	7.5	8.0	5.8
Jewell	Mean	4	5.08	6.40	7.63	8.96	9.53	10.99	11.81	12.53	14.92
Jewell	Mean	21	14.50	16.24	17.47	19.86	23.07	25.03	28.48	31.95	35.94
Jewell	Stdv	4	0.37	0.41	0.33	0.42	0.71	0.99	0.75	0.71	0.88
Jewell	Stdv	21	0.62	0.62	0.58	0.52	1.51	0.93	1.87	0.74	3.48
Jewell	CoV (%)	4	7.2	6.4	4.4	4.7	7.4	9.0	6.3	5.7	5.9
Jewell	CoV (%)	21	4.3	3.8	3.3	2.6	6.5	3.7	6.6	2.3	9.7
NW	Mean	4	5.63	7.00	8.01	9.62	10.38	12.19	12.95	13.60	16.53
NW	Mean	21	15.79	17.54	18.86	21.39	24.39	26.82	29.86	32.84	37.51
NW	Stdv	4	0.68	0.21	0.25	0.38	0.57	0.40	0.42	0.51	1.66
NW	Stdv	21	0.55	0.45	0.54	0.47	1.62	0.75	1.75	1.12	1.75
NW	CoV (%)	4	12.0	3.0	3.2	3.9	5.5	3.2	3.2	3.8	10.0
NW	CoV (%)	21	3.5	2.5	2.9	2.2	6.6	2.8	5.9	3.4	4.7
Rose	Mean	4	3.31	4.62	5.68	6.59	7.19	8.23	8.27	8.27	9.15
Rose	Mean	21	9.98	11.69	12.92	14.75	16.29	18.12	20.16	21.46	24.58
Rose	Stdv	4	1.30	0.72	0.66	0.66	0.81	0.96	0.97	1.41	1.65
Rose	Stdv	21	1.50	1.39	1.53	1.97	2.71	2.40	3.22	3.14	3.83
Rose	CoV (%)	4	39.2	15.6	11.7	10.0	11.3	11.7	11.8	17.1	18.0
Rose	CoV (%)	21	15.0	11.9	11.8	13.4	16.6	13.3	16.0	14.6	15.6

Table B-3. Dynamic modulus results for moisture conditioned mixes (GPa)

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	Mean	4	12.09	11.35	10.80	9.81	8.95	7.63	6.56	6.44	5.09
6N	Mean	21	5.84	5.21	4.77	4.04	3.37	2.57	2.21	1.94	1.35
6N	Stdv	4	1.72	1.37	1.24	1.11	1.35	1.20	1.27	1.01	1.31
6N	Stdv	21	0.62	0.55	0.45	0.41	0.37	0.29	0.26	0.21	0.14
6N	CoV (%)	4	14.2	12.0	11.5	11.3	15.1	15.7	19.4	15.6	25.9
6N	CoV (%)	21	10.6	10.5	9.4	10.0	11.0	11.4	11.7	10.9	10.1
218	Mean	4	14.65	13.62	13.17	12.30	11.55	10.09	9.28	8.75	7.33
218	Mean	21	7.41	6.65	6.07	5.22	4.41	3.32	2.82	2.52	1.62
218	Stdv	4	1.80	1.47	1.38	1.17	1.13	0.99	0.89	0.76	0.63
218	Stdv	21	0.84	0.69	0.60	0.50	0.45	0.34	0.38	0.30	0.41
218	CoV (%)	4	12.3	10.8	10.5	9.5	9.8	9.9	9.6	8.7	8.6
218	CoV (%)	21	11.3	10.4	9.9	9.6	10.3	10.3	13.4	12.1	25.3
235I	Mean	4	12.70	11.73	11.06	10.13	9.19	7.85	7.17	6.63	5.39
235I	Mean	21	5.34	4.81	4.38	3.70	2.99	2.24	1.90	1.70	1.20
235I	Stdv	4	2.13	1.87	1.84	1.79	2.12	1.74	1.55	1.45	1.33
235I	Stdv	21	0.52	0.53	0.54	0.46	0.41	0.33	0.27	0.27	0.20
235I	CoV (%)	4	16.8	16.0	16.7	17.6	23.1	22.2	21.6	21.9	24.8
235I	CoV (%)	21	9.7	11.1	12.3	12.5	13.6	14.7	14.3	15.7	16.2
235s	Mean	4	15.88	14.69	14.00	12.89	12.16	10.36	9.40	8.76	7.23
235s	Mean	21	7.40	6.62	6.07	5.22	4.38	3.40	2.88	2.65	1.81
235s	Stdv	4	1.82	2.09	1.80	1.77	1.80	1.58	1.47	1.30	1.12
235s	Stdv	21	0.75	0.67	0.61	0.56	0.54	0.42	0.36	0.43	0.28
235s	CoV (%)	4	11.5	14.2	12.9	13.8	14.8	15.2	15.7	14.8	15.5
235s	CoV (%)	21	10.1	10.2	10.0	10.7	12.2	12.2	12.6	16.0	15.4

Table B-3. (continued)

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
330B	Mean	4	12.59	11.63	11.42	10.48	9.89	8.42	7.82	7.41	6.14
330B	Mean	21	6.11	5.55	5.12	4.39	3.62	2.79	2.35	1.98	1.36
330B	Stdv	4	1.92	1.83	1.38	1.60	1.36	1.09	0.82	0.79	0.67
330B	Stdv	21	0.58	0.45	0.34	0.29	0.24	0.20	0.22	0.34	0.19
330B	CoV (%)	4	15.2	15.7	12.1	15.2	13.8	12.9	10.5	10.7	10.9
330B	CoV (%)	21	9.6	8.1	6.7	6.6	6.6	7.2	9.2	17.0	13.9
330I	Mean	4	18.05	16.96	16.18	15.13	14.38	12.44	11.18	10.73	8.85
330I	Mean	21	8.83	7.92	7.25	6.29	5.31	4.16	3.59	3.14	2.25
330I	Stdv	4	1.76	1.70	1.46	1.40	1.41	1.25	1.09	0.87	1.08
330I	Stdv	21	0.77	0.69	0.67	0.60	0.76	0.48	0.48	0.48	0.30
330I	CoV (%)	4	9.8	10.0	9.0	9.3	9.8	10.0	9.7	8.1	12.2
330I	CoV (%)	21	8.7	8.7	9.2	9.5	14.3	11.4	13.3	15.3	13.6
330s	Mean	4	16.08	15.39	14.69	13.89	13.30	11.62	10.71	10.07	8.61
330s	Mean	21	8.34	7.52	6.93	6.08	5.30	4.20	3.68	3.36	2.46
330s	Stdv	4	1.90	1.87	1.72	1.71	1.79	1.81	1.79	1.82	1.68
330s	Stdv	21	1.21	1.11	1.01	0.96	0.99	0.85	0.77	0.76	0.67
330I	CoV (%)	4	11.8	12.1	11.7	12.3	13.5	15.5	16.7	18.1	19.6
330I	CoV (%)	21	14.5	14.7	14.6	15.8	18.7	20.3	20.9	22.6	27.3
ALT	Mean	4	20.54	19.34	18.92	17.72	16.88	14.95	13.93	13.12	11.08
ALT	Mean	21	11.87	10.70	9.95	8.75	7.67	6.08	5.34	4.81	3.47
ALT	Stdv	4	1.08	0.95	1.40	1.33	1.21	1.18	1.12	1.12	1.41
ALT	Stdv	21	1.03	0.92	0.84	0.74	0.68	0.56	0.48	0.46	0.38
ALT	CoV (%)	4	5.3	4.9	7.4	7.5	7.2	7.9	8.1	8.6	12.8
ALT	CoV (%)	21	8.7	8.6	8.4	8.5	8.8	9.2	9.1	9.5	10.9

Table B-3. (continued)

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
Ded	Mean	4	8.42	7.73	7.33	6.72	5.94	4.62	4.43	3.99	3.12
Ded	Mean	21	3.70	3.25	2.95	2.43	1.97	1.38	1.15	0.89	0.58
Ded	Stdv	4	0.50	0.46	0.36	0.33	0.60	0.74	0.41	0.73	0.62
Ded	Stdv	21	0.36	0.31	0.28	0.23	0.20	0.20	0.21	0.24	0.20
Ded	CoV (%)	4	5.9	6.0	4.9	4.9	10.1	15.9	9.3	18.2	19.9
Ded	CoV (%)	21	9.6	9.6	9.4	9.5	10.3	14.5	18.6	26.6	34.7
F52	Mean	4	12.97	11.95	11.40	10.46	9.32	7.55	6.88	6.12	4.50
F52	Mean	21	5.55	4.89	4.42	3.67	2.92	2.12	1.72	1.37	0.94
F52	Stdv	4	0.98	0.66	0.58	0.49	0.62	0.65	0.64	1.04	1.34
F52	Stdv	21	0.34	0.28	0.27	0.25	0.19	0.17	0.17	0.15	0.11
F52	CoV (%)	4	7.6	5.5	5.1	4.7	6.6	8.6	9.2	16.9	29.7
F52	CoV (%)	21	6.2	5.7	6.1	6.7	6.7	7.9	9.7	10.9	11.8
HW4	Mean	4	11.81	10.90	10.26	9.33	8.54	7.22	6.62	6.07	5.21
HW4	Mean	21	4.86	4.28	3.88	3.26	2.61	1.95	1.68	1.47	0.96
HW4	Stdv	4	1.98	1.87	1.83	1.76	1.80	1.84	1.89	2.03	2.02
HW4	Stdv	21	0.95	0.87	0.81	0.75	0.68	0.54	0.49	0.48	0.34
HW4	CoV (%)	4	16.8	17.2	17.8	18.9	21.1	25.5	28.6	33.5	38.7
HW4	CoV (%)	21	19.5	20.3	21.0	23.1	26.1	27.9	29.1	32.6	35.2
I80B	Mean	4	16.33	15.71	15.16	14.13	13.45	11.87	10.89	10.00	8.65
I80B	Mean	21	7.83	7.40	6.88	6.02	5.22	4.06	3.58	3.01	2.14
I80B	Stdv	4	1.27	1.59	1.54	1.58	1.49	1.50	1.49	1.73	1.37
I80B	Stdv	21	1.35	1.69	1.60	1.44	1.31	1.06	0.98	0.66	0.54
I80B	CoV (%)	4	7.8	10.1	10.2	11.2	11.0	12.6	13.7	17.3	15.8
I80B	CoV (%)	21	17.2	22.8	23.3	23.9	25.1	26.2	27.5	21.8	25.0

Table B-3. (continued)

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
I80s	Mean	4	16.53	15.16	14.96	13.99	13.36	11.65	10.78	10.27	8.68
I80s	Mean	21	8.25	7.70	7.19	6.24	5.44	4.28	3.78	3.43	2.46
I80s	Stdv	4	2.35	2.44	2.10	2.02	2.07	1.89	1.87	1.67	1.50
I80s	Stdv	21	0.59	0.47	0.36	0.30	0.30	0.24	0.24	0.17	0.15
I80s	CoV (%)	4	14.2	16.1	14.0	14.4	15.5	16.3	17.4	16.2	17.3
I80s	CoV (%)	21	7.1	6.1	5.1	4.8	5.5	5.5	6.3	5.0	6.1
Jewell	Mean	4	15.88	14.95	14.29	13.01	12.67	10.86	9.98	9.45	7.77
Jewell	Mean	21	8.08	7.28	6.67	5.80	4.93	3.79	3.32	2.94	2.06
Jewell	Stdv	4	2.55	2.37	2.15	2.75	2.11	2.07	1.80	1.76	1.19
Jewell	Stdv	21	1.29	1.12	1.07	0.98	0.91	0.75	0.67	0.62	0.48
Jewell	CoV (%)	4	16.0	15.9	15.0	21.1	16.6	19.0	18.0	18.6	15.3
Jewell	CoV (%)	21	16.0	15.4	16.0	17.0	18.4	19.8	20.2	21.0	23.2
NW	Mean	4	13.45	12.56	11.94	11.15	10.58	9.14	8.33	7.86	6.41
NW	Mean	21	6.51	5.86	5.38	4.63	3.87	2.94	2.54	2.24	1.54
NW	Stdv	4	2.66	2.45	2.27	2.12	2.07	1.84	1.71	1.56	1.42
NW	Stdv	21	0.44	0.37	0.34	0.29	0.29	0.22	0.19	0.19	0.16
NW	CoV (%)	4	19.8	19.5	19.0	19.0	19.6	20.1	20.6	19.9	22.1
NW	CoV (%)	21	6.7	6.4	6.3	6.2	7.4	7.3	7.3	8.5	10.7
Rose	Mean	4	15.44	14.49	13.76	13.31	12.59	11.02	10.20	9.79	8.17
Rose	Mean	21	7.52	6.86	6.39	5.63	4.88	3.84	3.40	3.07	2.27
Rose	Stdv	4	2.50	2.58	1.76	2.46	2.43	2.04	2.00	1.96	1.43
Rose	Stdv	21	0.62	0.59	0.53	0.45	0.44	0.37	0.32	0.27	0.23
Rose	CoV (%)	4	16.2	17.8	12.8	18.4	19.3	18.6	19.6	20.0	17.6
Rose	CoV (%)	21	8.2	8.6	8.3	7.9	9.0	9.7	9.4	8.8	10.0

Table B-4. Phase angle values for moisture conditioned mixes

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
6N	Mean	4	7.27	8.74	9.74	11.43	12.92	13.34	14.07	15.19	20.50
6N	Mean	21	16.33	18.19	19.54	22.02	24.07	27.09	29.71	33.13	34.43
6N	Stdv	4	1.18	0.89	0.96	1.10	1.59	1.52	3.02	3.42	3.24
6N	Stdv	21	0.88	0.57	0.57	0.62	0.93	1.35	1.25	2.16	1.45
6N	CoV (%)	4	16.2	10.2	9.9	9.6	12.3	11.4	21.5	22.5	15.8
6N	CoV (%)	21	5.4	3.1	2.9	2.8	3.9	5.0	4.2	6.5	4.2
218	Mean	4	6.22	7.03	8.48	9.87	10.46	12.07	13.03	14.48	19.31
218	Mean	21	15.15	16.82	18.24	20.62	22.94	25.56	28.05	33.21	35.73
218	Stdv	4	0.63	1.64	0.53	0.52	0.59	0.89	0.78	0.92	4.15
218	Stdv	21	0.97	0.74	0.63	0.65	0.78	1.69	1.63	3.40	4.46
218	CoV (%)	4	10.2	23.2	6.3	5.3	5.7	7.3	6.0	6.4	21.5
218	CoV (%)	21	6.4	4.4	3.5	3.1	3.4	6.6	5.8	10.2	12.5
235I	Mean	4	7.93	9.67	10.91	12.49	14.82	15.36	17.29	18.96	21.62
235I	Mean	21	17.54	19.62	20.96	23.31	26.10	28.55	31.32	34.08	34.32
235I	Stdv	4	1.16	1.12	1.25	1.39	3.80	1.77	2.45	2.94	2.80
235I	Stdv	21	1.25	0.93	0.88	0.72	1.02	0.48	1.27	1.95	1.52
235I	CoV (%)	4	14.7	11.5	11.5	11.1	25.6	11.6	14.1	15.5	12.9
235I	CoV (%)	21	7.1	4.7	4.2	3.1	3.9	1.7	4.1	5.7	4.4
235s	Mean	4	7.42	8.93	9.83	11.55	12.72	14.10	14.96	16.70	19.48
235s	Mean	21	15.91	17.64	18.88	20.99	22.95	26.13	27.86	31.16	32.16
235s	Stdv	4	0.78	0.87	0.96	0.77	0.75	1.14	1.10	1.56	2.02
235s	Stdv	21	1.47	0.70	0.81	0.69	1.03	2.14	1.24	2.44	2.45
235s	CoV (%)	4	10.6	9.7	9.8	6.7	5.9	8.1	7.3	9.3	10.4
235s	CoV (%)	21	9.3	4.0	4.3	3.3	4.5	8.2	4.5	7.8	7.6

**Table B-4. (continued)** 

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
330B	Mean	4	6.18	7.47	8.61	9.93	10.90	11.56	13.29	15.74	21.42
330B	Mean	21	16.40	17.53	19.05	21.70	24.33	26.91	30.73	36.68	37.56
330B	Stdv	4	0.68	0.65	0.42	0.70	0.59	1.71	1.82	1.37	3.51
330B	Stdv	21	0.62	0.69	0.54	0.54	0.49	1.85	1.93	9.58	4.00
330B	CoV (%)	4	11.1	8.7	4.8	7.1	5.5	14.8	13.7	8.7	16.4
330B	CoV (%)	21	3.8	4.0	2.9	2.5	2.0	6.9	6.3	26.1	10.7
330I	Mean	4	5.90	7.24	8.06	9.53	10.27	11.68	12.34	13.64	19.25
330I	Mean	21	14.51	16.05	17.37	19.69	22.92	25.08	27.00	30.27	33.24
330I	Stdv	4	0.82	0.32	0.32	0.50	0.68	0.86	0.78	0.57	5.00
330I	Stdv	21	1.10	0.98	1.05	1.15	3.37	1.64	2.06	1.60	2.11
330I	CoV (%)	4	14.0	4.4	4.0	5.2	6.6	7.3	6.3	4.2	26.0
330I	CoV (%)	21	7.5	6.1	6.0	5.8	14.7	6.5	7.6	5.3	6.3
330s	Mean	4	5.40	6.51	7.59	9.21	10.15	11.13	11.63	12.75	15.84
330s	Mean	21	13.59	15.07	16.18	18.16	19.93	23.03	23.32	26.71	29.42
330s	Stdv	4	1.32	1.49	1.22	1.21	1.67	1.38	1.77	2.13	4.84
330s	Stdv	21	1.98	1.77	1.82	1.91	2.36	2.54	4.43	2.85	3.04
330I	CoV (%)	4	24.4	22.9	16.1	13.1	16.4	12.4	15.2	16.7	30.6
330I	CoV (%)	21	14.6	11.8	11.2	10.5	11.9	11.0	19.0	10.7	10.3
ALT	Mean	4	5.78	6.82	7.58	8.78	9.35	11.25	12.01	13.21	17.27
ALT	Mean	21	12.68	14.30	15.48	17.86	20.08	23.01	25.79	27.65	30.09
ALT	Stdv	4	1.50	0.69	0.63	0.66	0.64	0.80	0.77	0.90	5.56
ALT	Stdv	21	0.76	0.60	0.54	0.48	0.82	1.01	1.21	0.75	0.97
ALT	CoV (%)	4	26.0	10.1	8.3	7.5	6.8	7.2	6.4	6.8	32.2
ALT	CoV (%)	21	6.0	4.2	3.5	2.7	4.1	4.4	4.7	2.7	3.2

**Table B-4. (continued)** 

1 able B-4. (C	continuea)										
Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
Ded	Mean	4	10.35	11.68	12.94	14.59	16.63	16.33	17.83	22.01	31.94
Ded	Mean	21	20.25	21.65	22.79	25.13	27.85	30.58	33.11	36.06	42.01
Ded	Stdv	4	1.26	1.39	1.39	1.56	2.40	2.90	2.75	2.57	11.78
Ded	Stdv	21	1.49	0.61	0.75	0.58	1.10	1.79	2.75	2.81	12.15
Ded	CoV (%)	4	12.2	11.9	10.8	10.7	14.4	17.8	15.4	11.7	36.9
Ded	CoV (%)	21	7.4	2.8	3.3	2.3	3.9	5.9	8.3	7.8	28.9
F52	Mean	4	9.08	10.69	11.68	13.70	15.43	16.10	18.61	20.25	37.36
F52	Mean	21	19.85	21.50	23.07	25.35	28.63	31.02	34.38	37.22	36.88
F52	Stdv	4	0.88	0.72	0.73	1.09	1.34	2.13	2.20	2.99	30.68
F52	Stdv	21	1.01	0.97	0.95	1.10	1.58	1.51	2.92	3.64	2.84
F52	CoV (%)	4	9.7	6.7	6.2	7.9	8.7	13.3	11.8	14.8	82.1
F52	CoV (%)	21	5.1	4.5	4.1	4.3	5.5	4.9	8.5	9.8	7.7
HW4	Mean	4	8.55	10.32	11.33	13.05	15.29	15.38	17.07	18.43	21.92
HW4	Mean	21	18.96	20.85	22.47	24.77	28.17	30.10	32.32	34.94	37.15
HW4	Stdv	4	1.53	1.32	1.45	1.71	2.83	2.37	3.05	3.18	3.96
HW4	Stdv	21	2.57	2.61	2.85	2.71	2.93	3.40	2.86	2.96	2.25
HW4	CoV (%)	4	17.9	12.8	12.8	13.1	18.5	15.4	17.9	17.3	18.1
HW4	CoV (%)	21	13.5	12.5	12.7	11.0	10.4	11.3	8.9	8.5	6.1
I80B	Mean	4	5.22	7.19	8.22	9.44	10.28	11.77	12.32	12.89	15.69
I80B	Mean	21	12.91	15.33	17.06	19.57	22.02	24.43	26.84	29.37	33.93
I80B	Stdv	4	0.85	0.75	0.93	0.90	1.12	1.06	1.59	3.26	2.85
I80B	Stdv	21	2.52	1.20	1.50	1.74	1.65	1.88	2.10	2.48	3.27
I80B	CoV (%)	4	16.2	10.4	11.3	9.5	10.9	9.0	12.9	25.3	18.2
I80B	CoV (%)	21	19.5	7.8	8.8	8.9	7.5	7.7	7.8	8.4	9.6

**Table B-4. (continued)** 

Mix Name	Sample Number	Temp (°C)	25 Hz	15 Hz	10 Hz	5 Hz	3 Hz	1 Hz	0.5 Hz	0.3 Hz	0.1 Hz
I80s	Mean	4	5.08	6.59	7.81	9.00	9.72	10.74	11.08	12.90	16.64
I80s	Mean	21	12.80	15.03	16.24	18.64	20.72	23.04	25.40	28.65	34.16
I80s	Stdv	4	1.56	0.66	0.54	0.61	0.61	0.86	2.69	1.89	4.13
I80s	Stdv	21	3.43	0.38	0.41	0.67	0.97	0.79	1.05	2.81	5.29
I80s	CoV (%)	4	30.7	10.1	6.9	6.8	6.2	8.0	24.3	14.7	24.8
I80s	CoV (%)	21	26.8	2.5	2.5	3.6	4.7	3.4	4.1	9.8	15.5
Jewell	Mean	4	5.95	7.00	8.51	9.85	10.97	11.61	12.13	13.27	18.78
Jewell	Mean	21	15.03	16.63	18.00	20.48	23.06	25.39	28.59	30.94	33.28
Jewell	Stdv	4	1.08	1.98	1.08	1.22	1.53	1.86	2.17	2.23	4.43
Jewell	Stdv	21	0.70	0.72	0.65	0.75	0.93	1.31	2.17	1.86	1.59
Jewell	CoV (%)	4	18.2	28.3	12.7	12.3	13.9	16.1	17.9	16.8	23.6
Jewell	CoV (%)	21	4.7	4.3	3.6	3.6	4.0	5.2	7.6	6.0	4.8
NW	Mean	4	7.06	8.17	9.06	10.70	11.43	13.04	14.15	14.94	19.36
NW	Mean	21	15.31	17.33	18.58	21.10	23.83	25.98	29.17	32.09	34.57
NW	Stdv	4	1.29	1.07	0.98	1.04	1.17	1.63	1.47	1.95	3.04
NW	Stdv	21	1.05	0.69	0.85	0.60	1.20	0.86	1.36	1.64	1.10
NW	CoV (%)	4	18.2	13.1	10.8	9.7	10.2	12.5	10.4	13.0	15.7
NW	CoV (%)	21	6.9	4.0	4.6	2.8	5.0	3.3	4.7	5.1	3.2
Rose	Mean	4	4.79	6.22	6.92	8.83	9.63	10.57	11.56	13.15	16.44
Rose	Mean	21	13.00	14.91	16.33	18.47	20.37	22.64	25.04	28.37	30.89
Rose	Stdv	4	1.14	1.21	1.92	0.74	0.85	0.81	1.51	0.73	1.93
Rose	Stdv	21	1.28	1.04	1.41	1.09	1.39	1.93	2.40	2.11	2.66
Rose	CoV (%)	4	23.7	19.5	27.8	8.3	8.8	7.7	13.1	5.6	11.7
Rose	CoV (%)	21	9.8	7.0	8.6	5.9	6.8	8.5	9.6	7.4	8.6

# APPENDIX C. INDIRECT TENSILE STRENGTH RESULTS

Table C-1. Indirect tensile strength test results

		Contr	rol			Moisture Co	onditioned	
Mix	Sample	Thickness (mm)	Force (kN)	Stress (kPa)	Sample	Thickness (mm)	Force (kN)	Stress (kPa)
6N	3	62.48	9.37	955.1	1	62.95	8.43	853.0
6N	4	62.45	9.74	993.3	2	62.64	7.29	740.6
6N	6	62.38	10.06	1026.3	5	62.60	8.58	872.1
6N	8	62.49	9.83	1001.0	7	62.81	9.16	928.7
6N	10	62.47	9.79	998.2	9	62.72	8.67	880.4
6N	Mean	62.45	9.76	994.8	Mean	62.74	8.43	854.9
6N	Stdev	0.04	0.25	25.6	Stdev	0.14	0.69	69.7
6N	COV	0.07	2.52	2.6	COV	0.22	8.23	8.2
218	1	62.40	12.36	1260.7	2	62.70	7.14	724.6
218	5	62.39	12.10	1234.7	3	62.57	8.44	858.3
218	7	62.67	11.95	1214.1	4	62.50	8.57	873.3
218	8	63.24	10.79	1085.9	6	62.64	9.03	917.7
218	10	62.64	12.16	1236.3	9	62.60	9.07	922.4
218	Mean	62.67	11.87	1206.3	Mean	62.60	8.45	859.2
218	Stdev	0.35	0.62	69.3	Stdev	0.07	0.78	80.2
218	COV	0.55	5.26	5.7	COV	0.12	9.28	9.3
235I	4	62.50	12.10	1232.2	1	62.65	10.92	1109.9
235I	6	62.32	12.01	1227.3	2	62.45	11.51	1172.9
235I	8	62.37	11.98	1222.3	3	62.38	11.75	1199.6
235I	9	62.38	11.41	1164.9	5	62.37	11.48	1171.3
235I	10	62.38	11.51	1175.0	7	62.40	11.75	1198.7
235I	Mean	62.39	11.80	1204.3	Mean	62.45	11.48	1170.5
235I	Stdev	0.07	0.31	31.8	Stdev	0.12	0.34	36.5
235I	COV	0.11	2.67	2.6	COV	0.19	2.95	3.1
235S	3	62.40	12.10	1234.2	1	62.48	12.24	1246.8
235S	5	62.74	10.90	1106.5	2	62.60	12.45	1266.4
235S	6	62.41	11.51	1173.9	4	62.57	12.18	1239.0
235S	9	62.62	11.68	1187.6	7	62.74	11.81	1198.6
235S	10	62.84	11.56	1171.2	8	63.02	10.72	1083.0
235S	Mean	62.60	11.55	1174.7	Mean	62.68	11.88	1206.8
235S	Stdev	0.20	0.43	45.8	Stdev	0.21	0.69	73.4
235S	COV	0.31	3.71	3.9	COV	0.34	5.79	6.1

**Table C-1. (continued)** 

		Contr	rol		Moisture Conditioned				
Mix	Sample	Thickness	Force	Stress	Sample	Thickness	Force	Stress	
	_	(mm)	(kN)	(kPa)	•	(mm)	(kN)	(kPa)	
330B	1	62.30	9.14	934.3	2	62.51	7.66	780.1	
330B	5	62.43	10.35	1055.7	3	62.34	7.47	762.4	
330B	6	62.31	10.47	1069.5	4	62.50	7.86	800.3	
330B	9	62.41	9.29	947.2	7	62.56	7.16	728.7	
330B	10	62.40	10.45	1065.9	8	62.59	8.04	817.6	
330B	Mean	62.37	9.94	1014.5	Mean	62.50	7.64	777.8	
330B	Stdev	0.06	0.67	67.7	Stdev	0.10	0.34	34.4	
330B	COV	0.10	6.69	6.7	COV	0.15	4.47	4.4	
330I	2	62.50	12.02	1224.8	1	62.54	11.05	1124.5	
330I	4	62.44	12.02	1225.6	3	62.68	11.11	1128.0	
330I	5	62.39	12.06	1230.5	7	62.53	11.58	1178.8	
330I	6	62.09	12.00	1230.8	8	62.62	11.23	1141.5	
330I	9	62.51	10.83	1102.6	10	62.55	11.36	1155.9	
330I	Mean	62.39	11.79	1202.9	Mean	62.58	11.26	1145.7	
330I	Stdev	0.17	0.54	56.1	Stdev	0.06	0.21	22.2	
330I	COV	0.28	4.56	4.7	COV	0.10	1.89	1.9	
330S	1	62.46	12.56	1280.0	2	62.52	12.33	1255.5	
330S	3	62.51	12.24	1246.3	4	62.40	12.28	1252.9	
330S	6	62.34	12.33	1259.4	5	62.21	12.16	1244.5	
330S	8	62.26	12.42	1270.1	7	62.24	12.10	1237.9	
330S	9	62.31	12.50	1277.5	10	62.44	12.29	1253.0	
330S	Mean	62.38	12.41	1266.6	Mean	62.36	12.23	1248.8	
330S	Stdev	0.11	0.13	13.9	Stdev	0.13	0.10	7.3	
330S	COV	0.17	1.04	1.1	COV	0.21	0.78	0.6	
ALT	1	62.43	13.23	1349.3	2	62.48	13.20	1345.1	
ALT	5	62.40	13.14	1341.0	3	62.44	13.17	1343.3	
ALT	6	62.42	13.22	1347.8	4	62.46	13.07	1332.1	
ALT	7	62.28	13.07	1336.3	9	62.50	13.16	1340.8	
ALT	8	62.34	13.14	1341.9	10	62.47	13.12	1336.9	
ALT	Mean	62.37	13.16	1343.3	Mean	62.47	13.15	1339.6	
ALT	Stdev	0.06	0.06	5.3	Stdev	0.02	0.05	5.2	
ALT	COV	0.10	0.49	0.4	COV	0.04	0.39	0.4	
DED	1	62.34	12.21	1247.2	2	62.54	8.81	896.5	
DED	3	62.47	11.30	1151.8	4	62.66	8.71	885.4	
DED	7	62.35	11.66	1190.8	5	62.46	8.65	882.1	
DED	9	62.39	11.32	1155.3	6	62.57	8.66	881.3	
DED	10	62.29	10.90	1114.1	8	62.59	8.06	819.9	

**Table C-1. (continued)** 

DED   Mean   62.37   11.48   1171.8   Mean   62.56   8.58   8		nditioned	Moisture Co						
DED         Mean         62.37         11.48         1171.8         Mean         62.56         8.58         8           DED         Stdev         0.07         0.49         50.1         Stdev         0.07         0.30         3           DED         COV         0.11         4.27         4.3         COV         0.12         3.45           F52         2         62.56         8.55         870.0         1         62.75         7.98         8           F52         3         62.58         6.34         644.9         4         62.49         8.21         8           F52         4         62.40         9.01         919.5         7         62.67         6.80         6           F52         5         62.47         8.89         905.5         8         62.95         7.51         7           F52         6         62.46         8.41         856.8         10         62.89         8.01         8           F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev <t< td=""><td>Stress</td><td></td><td></td><td>Sample</td><td></td><td></td><td></td><td>Sample</td><td>Mix</td></t<>	Stress			Sample				Sample	Mix
DED         Stdev         0.07         0.49         50.1         Stdev         0.07         0.30         3           DED         COV         0.11         4.27         4.3         COV         0.12         3.45           F52         2         62.56         8.55         870.0         1         62.75         7.98         8           F52         3         62.58         6.34         644.9         4         62.49         8.21         8           F52         4         62.40         9.01         919.5         7         62.67         6.80         6           F52         5         62.47         8.89         905.5         8         62.95         7.51         7           F52         6         62.46         8.41         856.8         10         62.89         8.01         8           F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         5           F52         COV         0.12         13.23         13.3         COV         0.29	(kPa)			_					
DED         COV         0.11         4.27         4.3         COV         0.12         3.45           F52         2         62.56         8.55         870.0         1         62.75         7.98         8           F52         3         62.58         6.34         644.9         4         62.49         8.21         8           F52         4         62.40         9.01         919.5         7         62.67         6.80         6           F52         5         62.47         8.89         905.5         8         62.95         7.51         7           F52         6         62.46         8.41         856.8         10         62.89         8.01         8           F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         5           F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61 </td <td>873.0</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	873.0			1					
F52         2         62.56         8.55         870.0         1         62.75         7.98         8           F52         3         62.58         6.34         644.9         4         62.49         8.21         8           F52         4         62.40         9.01         919.5         7         62.67         6.80         6           F52         5         62.47         8.89         905.5         8         62.95         7.51         7           F52         6         62.46         8.41         856.8         10         62.89         8.01         8           F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         3           F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25 <td>30.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	30.3								
F52         3         62.58         6.34         644.9         4         62.49         8.21         8           F52         4         62.40         9.01         919.5         7         62.67         6.80         6           F52         5         62.47         8.89         905.5         8         62.95         7.51         7           F52         6         62.46         8.41         856.8         10         62.89         8.01         8           F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         5           F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         6         62.40         12.15         1239.4         5         62.77<	3.5	3.45	0.12	COV	4.3	4.27	0.11	COV	DED
F52         4         62.40         9.01         919.5         7         62.67         6.80         6           F52         5         62.47         8.89         905.5         8         62.95         7.51         7           F52         6         62.46         8.41         856.8         10         62.89         8.01         8           F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         5           F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         4         62.37         12.06         1231.0         3         62.77         11.23         11           HW4         6         62.40         12.15         1239.4         5         62	809.7	7.98	62.75	1	870.0	8.55	62.56		F52
F52         5         62.47         8.89         905.5         8         62.95         7.51         7           F52         6         62.46         8.41         856.8         10         62.89         8.01         8           F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         2           F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         6         62.40         12.15         1239.4         5         62.77         11.23         11           HW4         7         62.42         11.84         1208.0         8         62.77         10.52         16           HW4         Mean         62.61         11.16         1135.9         Mean	836.0	8.21	62.49	4	644.9	6.34	62.58	3	F52
F52         6         62.46         8.41         856.8         10         62.89         8.01         8           F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         3           F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         6         62.40         12.15         1239.4         5         62.77         11.23         11           HW4         7         62.42         11.84         1208.0         8         62.77         10.52         16           HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean	691.2	6.80	62.67	7	919.5	9.01	62.40	4	F52
F52         Mean         62.49         8.24         839.3         Mean         62.75         7.70         7           F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         3           F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         6         62.40         12.15         1239.4         5         62.77         11.23         11           HW4         7         62.42         11.84         1208.0         8         62.77         10.52         10           HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev<	759.6	7.51	62.95	8	905.5	8.89	62.47	5	F52
F52         Stdev         0.07         1.09         111.6         Stdev         0.18         0.56         3           F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         6         62.40         12.15         1239.4         5         62.77         11.23         11           HW4         7         62.42         11.84         1208.0         8         62.77         10.52         10           HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV	810.5	8.01	62.89	10	856.8	8.41	62.46	6	F52
F52         COV         0.12         13.23         13.3         COV         0.29         7.31           HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         6         62.40         12.15         1239.4         5         62.77         11.23         11           HW4         7         62.42         11.84         1208.0         8         62.77         10.52         10           HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1	781.4	7.70	62.75	Mean	839.3	8.24	62.49	Mean	F52
HW4         2         63.50         8.46         847.9         1         64.31         7.61         7           HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         6         62.40         12.15         1239.4         5         62.77         11.23         11           HW4         7         62.42         11.84         1208.0         8         62.77         10.52         10           HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5	57.5	0.56	0.18	Stdev	111.6	1.09	0.07	Stdev	F52
HW4         4         62.37         12.06         1231.0         3         64.25         7.63         7           HW4         6         62.40         12.15         1239.4         5         62.77         11.23         11           HW4         7         62.42         11.84         1208.0         8         62.77         10.52         10           HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         7         62.06         12.56         1288.1	7.4	7.31	0.29	COV	13.3	13.23	0.12	COV	F52
HW4         6         62.40         12.15         1239.4         5         62.77         11.23         11           HW4         7         62.42         11.84         1208.0         8         62.77         10.52         10           HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           180B         2         62.50         12.84         1307.5         1         62.78         12.15         12           180B         3         62.55         12.60         1282.5         4         62.67         12.31         12           180B         7         62.06         12.56         1288.1         8         62.94         12.23         12           180B         Mean         62.24         12.62	753.2	7.61	64.31	1	847.9	8.46	63.50	2	HW4
HW4         7         62.42         11.84         1208.0         8         62.77         10.52         10           HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62 <t< td=""><td>756.1</td><td>7.63</td><td>64.25</td><td>3</td><td>1231.0</td><td>12.06</td><td>62.37</td><td>4</td><td>HW4</td></t<>	756.1	7.63	64.25	3	1231.0	12.06	62.37	4	HW4
HW4         9         62.38         11.30         1153.3         10         62.47         8.21         8           HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         5         62.05         12.61         1293.6         6         62.65         12.20         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         <	1138.5	11.23	62.77	5	1239.4	12.15	62.40	6	HW4
HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         5         62.05         12.61         1293.6         6         62.65         12.20         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13	1067.4	10.52	62.77	8	1208.0	11.84	62.42	7	HW4
HW4         Mean         62.61         11.16         1135.9         Mean         63.31         9.04         9           HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         5         62.05         12.61         1293.6         6         62.65         12.20         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13	836.2	8.21	62.47	10	1153.3	11.30	62.38	9	HW4
HW4         Stdev         0.50         1.55         164.5         Stdev         0.89         1.71         1           HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         5         62.05         12.61         1293.6         6         62.65         12.20         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         13	910.3			Mean			62.61	Mean	HW4
HW4         COV         0.79         13.86         14.5         COV         1.41         18.93         1           I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         5         62.05         12.61         1293.6         6         62.65         12.20         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         13	180.8	1.71					0.50	Stdev	HW4
I80B         2         62.50         12.84         1307.5         1         62.78         12.15         12           I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         5         62.05         12.61         1293.6         6         62.65         12.20         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         13	19.9		1.41				0.79		HW4
I80B         3         62.55         12.60         1282.5         4         62.67         12.31         12           I80B         5         62.05         12.61         1293.6         6         62.65         12.20         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         13	1231.7			1	1307.5			2	I80B
I80B         5         62.05         12.61         1293.6         6         62.65         12.20         12           I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         13	1250.6	12.31	62.67	4	1282.5	12.60	62.55	3	I80B
I80B         7         62.06         12.56         1288.1         8         62.94         12.23         12           I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         13	1239.8			6				5	
I80B         9         62.02         12.50         1282.8         10         62.61         12.57         12           I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         13	1236.6							7	
I80B         Mean         62.24         12.62         1290.9         Mean         62.73         12.29         12           I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         1	1278.2							9	
I80B         Stdev         0.26         0.13         10.3         Stdev         0.13         0.17         1	1247.4							Mean	
	18.5								
I80B   COV   0.43   1.02   0.8   COV   0.21   1.36	1.5	1.36	0.21	COV	0.8	1.02	0.43	COV	I80B
	1000.0								
	994.2			2					
	918.7								
	1030.4								
	962.1			<del>                                     </del>					
	981.1			1					
	42.5								
	4.3								
	1122.1								
	947.2								

**Table C-1. (continued)** 

	Control					Moisture Conditioned				
Mix	Sample	Thickness	Force	Stress	Sample	Thickness	Force	Stress		
	Sample	(mm)	(kN)	(kPa)	Sample	(mm)	(kN)	(kPa)		
Jewell	7	62.48	11.51	1173.1	4	62.88	11.05	1119.1		
Jewell	9	62.45	11.55	1176.9	5	62.76	11.54	1170.7		
Jewell	10	62.46	11.56	1178.0	8	62.75	11.59	1175.6		
Jewell	Mean	62.49	11.56	1177.5	Mean	62.72	10.91	1107.0		
Jewell	Stdev	0.04	0.23	24.0	Stdev	0.13	0.92	93.1		
Jewell	COV	0.07	2.00	2.0	COV	0.20	8.46	8.4		
NW	2	62.55	8.90	906.0	1	63.46	7.61	763.7		
NW	4	62.72	8.73	886.1	3	62.66	8.50	863.7		
NW	5	62.62	9.07	921.9	6	62.77	6.97	706.8		
NW	7	62.51	9.20	936.8	8	62.65	7.18	729.7		
NW	10	62.43	9.03	920.4	9	62.58	8.68	882.6		
NW	Mean	62.57	8.98	914.3	Mean	62.82	7.79	789.3		
NW	Stdev	0.11	0.18	19.1	Stdev	0.36	0.77	79.5		
NW	COV	0.18	1.98	2.1	COV	0.58	9.88	10.1		
Rose	2	62.42	11.43	1166.2	1	62.53	12.11	1233.2		
Rose	3	62.48	12.13	1236.0	6	62.40	12.09	1233.8		
Rose	4	62.34	12.09	1235.1	8	62.32	11.86	1211.9		
Rose	5	62.39	12.14	1238.7	9	62.45	12.06	1229.2		
Rose	7	62.33	12.02	1228.0	10	62.47	11.77	1199.7		
Rose	Mean	62.39	11.96	1220.8	Mean	62.43	11.98	1221.6		
Rose	Stdev	0.06	0.30	30.8	Stdev	0.08	0.15	15.1		
Rose	COV	0.10	2.51	2.5	COV	0.13	1.28	1.2		