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EXECUTIVE SUMMARY 

The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in the American 

Association of State Highway and Transportation Officials (AASHTO) Mechanistic-Empirical 

Pavement Design Guide (MEPDG)/AASHTOWare Pavement-ME Design. The standard 

laboratory procedures for AC dynamic modulus testing and development of a master curve 

require time and considerable resources. The objective of this feasibility study was to develop 

frameworks for predicting the AC relaxation modulus (E(t)) or dynamic modulus master curve 

from routinely collected falling weight deflectometer (FWD) time history data. According to the 

theory of viscoelasticity, if the AC relaxation modulus, E(t), is known, |E*| can be calculated 

(and vice versa) through numerical inter-conversion procedures.  

The overall research approach involved the following steps: 

 Conduct numerous viscoelastic (VE) forward analysis simulations by varying E(t) master 

curve coefficients, shift factors, pavement temperatures, and other layer properties 

 Extract simulation inputs and outputs and assemble a synthetic database 

 Train, validate, and test neural network (NN) inverse mapping models to predict E(t) master 

curve coefficients from single-drop FWD deflection-time histories 

A computationally efficient VE forward analysis program developed by Michigan State 

University (MSU) researchers was adopted in this study to generate the synthetic database. The 

VE forward analysis program accepts pavement temperature and layer properties (AC E(t) 

master curve, Eb/sub, h, μ,) and outputs surface deflection-time histories. Several case studies 

were conducted to establish detailed frameworks for predicting the AC E(t) master curve from 

single-drop FWD time history data. Case studies focused on full-depth AC pavements as a first 

step to isolate potential backcalculation issues that are only related to the modulus master curve 

of the AC layer. For the proof-of-concept demonstration, a comprehensive full-depth AC 

analysis was carried out through 10,000 batch simulations of a VE forward analysis program. 

Anomalies were detected in the comprehensive raw synthetic database and were eliminated 

through imposition of certain constraints on the sum of E(t) sigmoid coefficients, c1 + c2.  

Except for the first two or three time intervals, deflection-time histories at all other time intervals 

considered in the analysis were predicted by NNs with very high accuracy (R-values greater than 

0.97). The NN inverse modeling results demonstrated the potential of NNs to predict the E(t) 

master curve coefficients from single-drop FWD deflection-time history data. However, the 

current prediction accuracies are not sufficient to recommend these models for practical 

implementation.  

Considering the complex nature of the problem with many uncertainties involved, including the 

possible presence of dynamics during FWD testing (related to the presence and depth of stiff 

layer, inertial and wave propagation effects, etc.), the limitations of current FWD technology 

(integration errors, truncation issues, etc.), and the need for a rapid and simplified approach for 
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routine implementation, future research recommendations have been provided that make a strong 

case for an expanded research study.  
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INTRODUCTION 

Background 

The new American Association of State Highway and Transportation Officials (AASHTO) 

pavement design guide (Mechanistic-Empirical Pavement Design Guide [MEPDG]) and the 

associated software (AASHTOWare Pavement ME Design, formerly known as DARWin ME) 

represents a major advancement in pavement design and analysis. The MEPDG employs the 

principle of a master curve based on time-temperature superposition principles to characterize 

the viscoelastic-plastic property of asphalt materials. The MEPDG recommends the use of 

asphalt dynamic modulus, |E*|, as the design parameter. The dynamic modulus master curve is 

constructed from multiple values of measured dynamic modulus at different temperature and 

frequency conditions. The standard laboratory procedure for dynamic modulus testing requires 

time and considerable resources. 

State agencies, faced with the challenge of implementing the MEPDG/Pavement ME Design, are 

looking to field testing as a possibility for obtaining values for use in new design. The laboratory 

testing requirements are extensive, and the idea of obtaining default regional properties for 

specific materials and structures in the field is attractive. Falling weight deflectometer (FWD) 

testing has become the predominant method for characterizing in situ material properties for 

rehabilitation design. The state of the practice in FWD analysis involves static backcalculation of 

pavement layer moduli, although FWD measurements capture the entire time history of 

deflections under dynamic loading conditions.  

In the MEPDG/Pavement ME Design flexible pavement rehabilitation analysis (NCHRP 2004, 

ASHTO 2008, AASHTO 2012), the pre-overlay damaged master curve of the existing asphalt 

concrete (AC) layer is determined by first calculating an “undamaged” modulus and then 

adjusting this modulus for damage using the pre-overlay condition. The undamaged AC master 

curve is derived from its aggregate gradation and laboratory-tested asphalt binder 

properties/asphalt binder grade using Witczak’s dynamic modulus predictive equation. Both 

aggregate gradation and asphalt binder properties/asphalt binder grade may be obtained from 

construction records or testing of field-cored samples. To characterize the damage in the existing 

pavement at the time of overlay, MEPDG/Pavement ME Design allows the input of 

backcalculated moduli from nondestructive testing (NDT) with frequency and temperature under 

the Level 1 rehabilitation input option. The process is shown schematically in Figure 1. 

If the damaged |E*| master curve of the AC in an in-service pavement can be derived from the 

time histories of routinely collected FWD deflection data, it would not only save lab time and 

resources, but it could also lead to a more accurate prediction of the pavement’s remaining 

service life.  
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Figure 1. AC layer damage master curve computation in MEPDG/Pavement ME Design 

Level 1 (NCHRP 2004) 

Objectives and Scope 

The objective of this study is to develop the asphalt dynamic modulus master curve directly from 

time histories of routinely collected FWD test data. For this project, the Iowa Department of 

Transportation (Iowa DOT) is primarily interested in delivering a proof-of-concept methodology 

for documenting the Iowa AC mix damaged master curve shape parameters (C1, C2 , C3, C4) 

relative to the mix IDs/Station Nos., if possible, in the Pavement Management Information 

System (PMIS). This would be of significant use to the city, county, and state engineers because 

the outcome of this research would enable them to look up the damaged master curve shape 

parameters from the PMIS while running a flexible pavement rehabilitation analysis and design 

using MEPDG/Pavement ME Design.  
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OVERVIEW OF ASPHALT MASTER CURVE AND FWD BACKCALCULATION 

Dynamic Modulus (E*) Master Curve of Asphalt Mixtures 

The E* value is one of the asphalt mixture stiffness measures that determines the strains and 

displacements in a flexible pavement structure as it is loaded or unloaded. The asphalt mixture 

stiffness can alternatively be characterized via the flexural stiffness, creep compliance, 
relaxation modulus, and resilient modulus. The E* value is one of the primary material 
property inputs required in the MEPDG/Pavement ME Design procedure (NCHRP 2004, 

ASHTO 2008, AASHTO 2012).  

Definition of AC Dynamic Modulus (E*) 

The definition of E* comes from the complex modulus (E*), consisting of both a real and 

imaginary component, as shown in the following equation: 

21* iEEE    (1) 

Here, 1i , E1 is the storage modulus part of the complex modulus, and E2 is the loss 

modulus part of the complex modulus. The E* value can be mathematically defined as the 

magnitude of the complex modulus, as shown in the following equation: 

2

2

2

1* EEE 
  (2) 

E* is also determined experimentally as the ratio of the applied stress amplitude to the strain 

response amplitude under a sinusoidal loading, as shown in the following equation: 

o

oE



*

  (3) 

Here, 0 is the average stress amplitude and 0 is the average recoverable strain. The E* value 

of the asphalt mixture is strongly dependent upon temperature (T) and loading rate, defined 

either in terms of frequency (f) or load time (t).  

Figure 2 illustrates how the dynamic modulus can be determined in the laboratory. The peak 

points of applied load and strain response at each of the test frequencies and temperatures are 

utilized to determine the dynamic modulus under given conditions. The measured dynamic 

moduli at different frequencies and temperatures are utilized to construct the AC master curve.  
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Figure 2. Laboratory AC dynamic modulus (E*) test protocol 

AC Dynamic Modulus (E*) Master Curve 

Pavement ME Design (AASHTO 2012) builds the E* master curve at a reference temperature 

by using it to determine E* at all levels of temperature and time rate of load.  
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The E* master curves are constructed using frequency-temperature (or time-temperature) 

superposition concepts represented by shift factors. The combined effects of temperature and 

loading rate can be represented in the form of a master curve relating E* to a reduced frequency 

(fr) or a reduced time (tr) by a sigmoidal function. Each of the parameters (i.e., a reduced 

frequency [fr] or a reduced time [tr]) utilizes a sigmoidal function equation of the E* master 

curve. However, the various equations of a sigmoidal function for the E* master curve have 

been reported in the literature (Pellinen et al. 2004, Schwartz 2005, Witczak 2005, Kutay et al. 

2011). For clarification, in this study, the sigmoidal function equation using a reduced frequency 

(fr) is defined as the dynamic modulus E* master curve equation, while the sigmoidal function 

equation using a reduced time (tr) is defined as the relaxation modulus E(t) master curve 

equation. From the theory of viscoelasticity, E* and E(t) can be converted from each into the 

other through numerical procedures (Park and Schapery 1999). The dynamic modulus E* 

master curve equation using a reduced frequency (fr) in this study is described as follows:  

3 4

2
1 ( log( ))

*
1 rC C f

C
Log E C

e
 

 
   (4) 

Where,  

 fr = reduced frequency of loading at reference temperature 

 C1 = minimum value of E* 

 C1 + C2 = maximum value of E* 

 C3 and C4 = parameters describing the shape of the sigmoidal function 

 

The function parameters C1 and C2 in general depend on the aggregate gradation and mixture 

volumetrics, while the parameters C3 and C4 depend primarily on the characteristics of the 

asphalt binder (Schwartz 2005). The reduced frequency (fr ) can be shown in the following form: 

( )a ( )r Tf f T
  (5) 

Where,  

 f = frequency of loading at desired temperature 

 T = temperature of interest 

 aT(T) = shift factor as a function of temperature 

 

The equations widely used to express the temperature-shift factor of aT(T) include Williams-

Landel-Ferry equations, the Arrhenius equations, and the second-order polynomial equations 

(Pellinen et al. 2004, Witczak 2005, Kutay et al. 2011, Varma et al. 2013b). The shift factor 
utilized in this study is the logarithm of the shift factor computed by using a second-order 
polynomial (Kutay et al. 2011, Varma et al. 2013b), described as follows: 

2 2

1 2log(a ( )) ( ) (T T )T ref refT a T T a   
  (6) 
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Where,  

 Tref = reference temperature, 19C (or 66.2°F) 

 a1 and a2 = the shift factor polynomial coefficients 

The values for C1, C2, C3, C4, and aT(T) in a sigmoidal function of master curve are all 

simultaneously determined from test data using nonlinear optimization techniques, e.g., the 

Solver function in Excel software. The relaxation modulus E(t) using a reduced time (tr) can be 

converted from the dynamic modulus E* using a reduced frequency (fr) through numerical 

procedures (Park and Schapery 1999) and described as follows:  

3 4

2
1 ( log(t ))

( (t))
1 rc c

c
Log E c

e
 

 
   (7) 

Where,  

 tr = reduced time at reference temperature 

 c1, c2, c3, and c4 = the relaxation modulus E(t) coefficients  

FWD Backcalculation  

Static FWD Backcalculation Approaches  

The FWD backcalculation procedure involves two calculation directions, namely forward and 

inverse. In the forward direction of analysis, theoretical deflections are computed under the 

applied load and the given pavement structure using assumed pavement layer moduli. In the 

inverse direction of analysis, these theoretical deflections are compared with measured 

deflections, and the assumed moduli are then adjusted in an iterative procedure until the 

theoretical and measured deflection basins match acceptably well. The moduli derived in this 

way are considered representative of the pavement response to load and can be used to calculate 

stresses or strains in the pavement structure for analysis purposes. This is an iterative method of 

solving the inverse problem and will not have a unique solution in most cases. 

In the FWD test, an impulse load within the range of 6.7 to 156 kN is impacted on the pavement 

surface, and associated surface deflection values in the time domain are measured at different 

locations (usually at six or seven locations) by geophones. Figure 3 illustrates the typical result 

of an FWD test. In general, deflection-time history curves for each geophone exhibit Haversine 

behavior, and peak values of these curves for each geophone are used to plot the deflection basin 

curve. Static FWD backcalculation methods utilize only peak values of deflection-time history 

curves to compute moduli values. 
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Figure 3. Illustration of typical FWD deflection measurements (Goktepe et al. 2006)  

Some of the major factors that can lead to erroneous results in backcalculation, and some 

cautions for avoiding them, are as follows (Irwin 2002, Von Quintus and Killingsworth 1998, 

Ullidtz and Coetzee 1998): 

 There must be a good match between the assumptions that underlie backcalculation and the 

realities of the pavement. 

 The loading is assumed to be static in backcalculation programs while, in reality, FWD 

loading is dynamic. 

 Major cracks in the pavement, or testing near a pavement edge or joint, can cause the 

deflection data to depart drastically from the assumed conditions. 

 Pavements with cracks or various discontinuities and other such features, which are the main 

focus of maintenance and rehabilitation efforts, are ill-suited for any backcalculation analysis 

or moduli determination that is based on elastic layered theory. 

 FWD deflection data have seating, random, and systematic errors. 

 It is seldom clear just how to set up the pavement model. Layer thicknesses are often not 

known, and subsurface layers can be overlooked. A trial-and-error approach is often used. 

 Layer thicknesses are not uniform in the field, nor are materials in the layers completely 

homogeneous. 

 There are vertical changes in the pavement materials and subgrade soils at each site. This 

change in the vertical profile is minor at some sites, whereas at other sites the change is 

substantial. 

 Some pavement layers are too thin to be backcalculated in the pavement model. Thin layers 

contribute only a small portion to the overall deflection, and, as a result, the accuracy of their 

backcalculated values is reduced. 

 Moisture contents and depth to hard bottom can vary widely along the road. 

 The presence of a shallow water table and related hard layer effects can influence the 

backcalculation results. 

 Temperature gradients exist in the pavement, which can lead to modulus variation in asphalt 

layers and warping in concrete layers. 
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 Most unbound pavement materials are stress-dependent, and most backcalculation programs 

do not have the capability to handle that. 

 Spatial and seasonal variations of pavement layer properties exist in the field. 

 Input data effects are a factor. These include seed moduli, modulus limits, and layer 

thicknesses, as well as program controls such as number of iterations and convergence 

criteria. 

The viscoelastic (VE) pavement properties and dynamic effects such as inertia and damping 

under FWD testing with dynamic loads can affect the pavement response. However, static 

backcalculation neglects these effects and therefore less reflects the actual situation. In addition, 

while the MEPDG uses elastic, plastic, viscous, and creep properties of materials to predict 

pavement performance over the design life, current static backcalculation methods cannot 

capture all of these properties. Further, FWD deflection-time history curves contain richer 

information that have the potential to reduce erroneous results.  

Dynamic Backcalculation Approaches  

Dynamic pavement response and backcalculation models have been studied by a number of 

researchers (Al-Khoury et al. 2001a, Al-Khoury et al. 2001b, Al-Khoury et al. 2002a, Al-Khoury 

et al. 2002b, Callop and Cebon 1996, Chang et al. 1992, Dong et al. 2002, Foinquinos et al. 

1995, Goktepe et al. 2006, Grenier and Konrad 2009, Grenier et al. 2009, Hardy and Cebon 

1993, Kausel and Roesset 1981, Liang and Zhu 1998, Liang and Zeng 2002, Lytton 1989, Lytton 

et al. 1993, Magnuson 1998, Magnuson et al. 1991, Maina et al. 2000, Mamlouk and Davies 

1984, Mamlouk 1985, Nilsson et al. 1996, Roesset 1980, Roesset and Shao 1985, Shoukry and 

William 2000, Sousa and Monismith 1987, Stubbs et al. 1994, Ullidtz 2000, Uzan 1994a, Uzan 

1994b, Zaghloul and White 1993). 

Most of the developed methods employ dynamic pavement response models in the forward 

calculations of backcalculation procedures. Most of the forward methods adapted analytical or 

semi-analytical approaches in the solution methodologies, whereas some utilized finite element 

(FE) or numerical methods.  

The material properties affecting the dynamic response of a pavement are Young’s modulus (E), 

complex modulus (G* or E*), Poisson’s ratio (), mass densities (), and damping ratio (). The 
complex modulus is related to the viscoelastic property of asphalt materials and internal damping 

as a function of inertia is considered for unbound and subgrade layers in electrodynamic analyses 

(Nilsson et al. 1996, Maina et al. 2000, Stubbs et al. 1994, Ullidtz 2000, Uzan 1994a, Uzan 

1994b). Among material properties, the complex modulus has been considered as an unknown 

parameter in dynamic backcalculation analysis. The other material properties have been 

generally assumed to be known because these properties have only slight influence on the 

dynamic response of the pavement (Goktepe et al. 2006). 

In the developed dynamic backcalculation methods, the FWD time history data may be fitted 

into the frequency domain or the time domain (Uzan 1994a, Uzan 1994b). Figure 4 and Figure 5 
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present schematic representation of both fitting approaches for dynamic load backcalculation. 

Fourier analyses and inverse Fourier analyses can be conducted for the transformation of the 

domain of data.  

 

Figure 4. Schematic representation of the frequency domain fitting for dynamic load 

backcalculation (Goktepe et al. 2006) 

 

Figure 5. Schematic representation of dynamic time domain fitting for dynamic load 

backcalculation (Goktepe et al. 2006) 
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In frequency domain fitting, the applied load and deflection response time histories are 

transformed into the frequency domain by using a Fourier transformation. The compliance 

function of the complex deflection function divided by the complex load function is the 

measured complex unit response of the pavement at each frequency. Similarly to static 

backcalculation methods, an iterative procedure is carried out to find the set of complex moduli 

that will generate the calculated complex unit response close to the measured one. In time 

domain fitting, the impulse load time histories should be transformed into the frequency domain 

data in order to input the available forward model into the frequency domain. Inverse Fourier 

transformations should be carried out to compare calculated and measured deflections in the time 

domain.  

Some advantages of developed dynamic backcalculation procedures include considering asphalt 

viscoelastic properties and obtaining more precise results than static procedures. However, some 

of the limitations of current dynamic backcalculation procedures include the following (Goktepe 

et al. 2006, Grenier and Konrad 2009): 

 The current dynamic backcalculation procedures have more complexity and greater 

computational expense.  

 The error minimization scheme can fall into a local minimum (which may not be the absolute 

minimum), depending on the complexity of the error function.  

 The uniqueness of the solution is not always guaranteed and depends on the number of 

unknown parameters and the correlation between these parameters. 

 Because many observations are used in the dynamic approach, correlations between 

unknown parameters are usually low, which is not the case in the static approach that uses 

only the deflection basin. 

Viscoelastic Backcalculation Approach  

Although many static and dynamic backcalculation approaches have been proposed in the past, 

only fewer recent studies have attempted to develop dynamic backcalculation approaches to 

derive the AC E* master curve from FWD defection-time history data. 

Kutay et al. (2011) developed a methodology that backcalculates the damaged dynamic modulus 

|E*| master curve of asphalt concrete by utilizing the time histories of FWD surface deflections. 

A computationally efficient layered viscoelastic forward solution, referred to as LAVA, was 

employed iteratively to backcalculate the AC E(t) master curve (which can then be converted to 

the |E*| master curve using numerical inter-conversion procedures) based on FWD deflection-

time history data. Certain information such as the thickness of each layer (AC, base, subbase, 

etc.), the modulus, and the Poisson’s ratio of the layers under the AC layer are required for 

backcalculation of E(t). Specifically, the number of layers and thickness of each layer, modulus 

and Poisson’s ratio of unbound layers, and Poisson’s ratio of the AC layer are required as inputs. 

Using simulated examples of two pavement structures, Kutay et al. (2011) demonstrated that it is 

possible to backcalculate certain portions of the E(t) master curve using deflection-time histories 
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from a typical FWD test. The study noted that the proposed backcalculation algorithm is 

independent of layer geometry because the layer structure and the thickness of the asphalt layer, 

for the cases analyzed, did not have an influence on the backcalculated E(t) or |E*| master curves. 

The authors also proposed modifications to the current FWD technology to enable longer FWD 

pulses and to ensure more reliable readings in the tail regions of the FWD deflection-time 

histories. 

As a follow-up to the work by Kutay et al. (2011), Varma et al. (2013a) estimated and proposed 

a set of temperatures at which FWD tests should be conducted to be able to maximize the portion 

of the E(t) curve that can be accurately backcalculated. A genetic algorithm–based (GA-based) 

viscoelastic backcalculation algorithm was proposed that is capable of predicting E(t) and |E*| 

master curves as well as time-temperature superposition shift factors from a set of FWD 

deflection-time histories at different temperatures. The study concluded that deflection-time 

histories from FWD tests conducted between 68–104 °F (20–40 °C) are useful in accurately 

estimating the entire E(t) or |E*| master curve. 

Varma et al. (2013b) considered FWD deflection-time history data from a single FWD drop 

combined with the temperature gradient across the AC layer at the time of FWD testing in their 

GA-based viscoelastic backcalculation approach, referred to as BACKLAVA. The study 

concluded that, unless a stiff layer (bedrock) exists close to the pavement surface that can 

contribute to the dynamics in the FWD test, BACKLAVA is capable of inferring E(t)/|E*| master 

curve coefficients (including shift factors) as well as the linear elastic moduli of the base and 

subgrade layers. 
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DEVELOPMENET OF FRAMEWORK FOR DERIVING AC MASTER CURVE FROM 

FWD DATA 

Based on the research team’s discussions with the Iowa DOT’s Office of Special Investigations 

and Bituminous Materials Office regarding the specific objectives of this project, the Iowa DOT 

is eventually interested in documenting the Iowa AC mix damaged master curve coefficients 

relative to the mix IDs/Station Nos., if possible, in the Pavement Management Information 

System (PMIS). This would be of significant use to the city, county, and state engineers because 

the outcome of this research would enable them to look up the damaged master curve shape 

parameters from the PMIS while running a flexible pavement rehabilitation analysis and design 

using MEPDG/Pavement ME Design. As a first and foundational step, this feasibility research 

study focused on establishing frameworks for predicting the AC E(t) master curve coefficients 

from FWD time history data. 

Based on a comprehensive literature review, the existing direct, indirect, and derivative 

approaches to damaged master curve determination using FWD time history data were 

synthesized in the previous section. This section describes the development of a detailed 

framework as a first step in a proof-of-concept demonstration for deriving the AC |E*| master 

curve coefficients from single-drop FWD time history data.  

In the proposed approach, a layered viscoelastic forward analysis tool is first used to generate a 

database of AC master curve (input)–pavement surface deflection time history (output) scenarios 

for a variety of pavement layer thicknesses and pavement temperatures (see Figure 6). In the 

second step, the neural network (NN) methodology is employed to map the AC surface 

deflection time history data (generated through a forward-layered viscoelastic analysis model) to 

(damaged) AC relaxation modulus master curve shape parameters (see Figure 7).  
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Figure 6. Schematic of synthetic database development approach using the viscoelastic 

forward analysis tool 
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Figure 7. Schematic of neural networks approach to predict AC E(t) master curve from 

FWD deflection-time history data 
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The backcalculation of shift factors for the master curve requires knowledge of the temperature 

profile at the time of the FWD testing, which translates into additional dimensions of complexity 

in the forward analysis and database generation using the current approach. Therefore, 

considering the limited project duration and lack of development time, the current approach is 

restricted to the backcaclulation of AC E(t) master curve coefficients. However, it is 

recommended that future research efforts include backcalculation of shift factors for the master 

curve from FWD deflection-time history data. 

Case Studies 

First, a preliminary (screening) analysis was carried out for full-depth AC through various case 

studies to verify the feasibility of the NN approach, identify the promising input features and NN 

parameters for inverse modeling, and identify associated modeling challenges. The primary goal 

of these case studies was to answer the question: Are NNs capable of learning/mapping the 

complex, nonlinear relationship between AC E(t) master curve coefficients and FWD time 

history data? These case studies (as well as the rest of the report) focus on full-depth AC 

pavements as a first step to isolate potential backcalculation issues that are only related to the 

modulus master curve of the AC layer. 

Among the several case studies conducted by the research team, three case studies are reported 

here that systematically varied the inputs for the NN inverse modeling: (1) consider only FWD 

D0 time history data; (2) consider FWD D0, D8, and D12 time history data; (3) consider only 

FWD Surface Curvature Index (D0–D12). Here D0, D8, and D12 refer to deflection-time history 

data recorded at an offset of 0, 8, and 12 inches, respectively, from the center of the FWD 

loading plate. It is expected that the effect of viscoelasticity will be more pronounced in the 

sensors closest to the load plate. Further, some studies have reported that the addition of further 

sensors in the backcalculation process tends to increase the error in E(t) predictions (Varma et al. 

2013a). However, future research should consider all sensors in the standard FWD configuration 

to elaborately investigate their influence on the accuracy of the backcalculated E(t) master curve 

and unbound layers.  

Development of Synthetic Database 

As mentioned previously, the VE forward analysis program outputs pavement surface deflection-

time histories based on the following inputs: FWD stress-time history, AC E(t) master curve 

coefficients and shift factors, pavement temperature, pavement layer thicknesses and Poisson’s 

ratios, and unbound layer moduli. The FWD stress-time history for a standard 9 kip loading was 

used for these case studies and for other analyses discussed in the rest of the report. For full-

depth AC analysis, the inputs were reduced to AC E(t) master curve coefficients (c1, c2, c3, and 

c4) and shift factors (a1 and a2), pavement temperature (Tac), AC layer thickness (Hac), subgrade 

layer modulus (Esub), AC Poisson’s ratio (μac), and subgrade Poisson’s ratio (μsub).  

Because the goal of this exercise was to quickly verify the feasibility of the NN approach, certain 

inputs were blocked out from the modeling by assigning them constant values for all simulations. 

This enabled a more focused evaluation of the ability of the NNs in modeling the relationship 
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between the E(t) master curve and deflection-time histories. A synthetic database consisting of 

100 scenarios was generated through batch simulations of the VE forward analysis program 

using the input ranges summarized in Table 1. The min-max ranges of E(t) master curve 

coefficients and shift factors are based on the Michigan State University (MSU) E(t) database of 

100+ hot-mix asphalt (HMA) mixtures (Varma et al. 2013a). 

Table 1. Summary of input ranges used in the generation of 100 VE forward analysis 

scenarios for case studies 

Input Parameter Min Value Max Value 

Pavement temperature (Tac) 32 deg-F (0 deg-C) 113 deg-F (45 deg-C) 

AC layer thickness (Hac): 20 in. (constant) 

Subgrade modulus (Esub): 10,000 psi (constant) 

AC Poisson’s ratio (μac): 0.3 (constant) 

Subgrade Poisson’s ratio (μsub): 0.4 (constant) 

c1 0.045 2.155 

c2 1.8 4.4 

c3 -0.523 1.025 

c4 -0.845 -0.38 

a1 -5.380E-4 1.136E-3 

a2 -1.598E-1 -0.770E-1 

 

Descriptive statistics (such as the mean, standard deviation, and data about the shape of the 

distribution) were calculated separately for each of the variables in the synthetic datasets. To 

visually see the distribution of generated synthetic datasets, a compound graph consisting of a 

histogram (with the normal distribution curve superimposed over the observed frequencies), 

normal probability plot, box plot, and descriptive statistics was compiled for each of the variable 

inputs. These graphs are displayed in Figure 8.  
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Figure 8. Compound graphs summarizing descriptive statistics, histograms, box plots, and 

normal probability plots for variable inputs in the synthetic datasets 
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The latter portion of the FWD deflection-time history curve typically includes noise and 

integration errors, and some recent studies have concluded that the current FWD technology 

needs modification to ensure reliable measurements in the tail regions of the FWD deflection-

time histories (Kutay et al. 2011). Consequently, it was decided to use the left half of the 

deflection-time history data (i.e., up to peak deflections) in the NN inverse modeling. This 

corresponds to deflection-time histories at the first 20 discrete time intervals, as shown in Figure 

9. Box and whisker plots for D0, D8, and D12 deflection-time histories (outputs) are displayed in 

Figure 10. In these plots, the central square indicates the mean, the box indicates the mean 

plus/minus the standard deviation, and whiskers around the box indicate the mean plus/minus 

1.96×standard deviation. 

 

Figure 9. Typical deflection-time history generated by the VE forward analysis program at 

one location. Only the left half of the deflection-time history data was considered in NN 

inverse modeling in this study. 

 

Figure 10. Box and whisker plots of D0, D8, and D12 deflection-time histories generated by 

VE forward analysis simulations for the case studies 
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traditional methods in civil and transportation engineering applications (Flintsch 2003). They 

have become standard data fitting tools, especially for problems that are too complex, poorly 

understood, or resource intensive to tackle using more traditional numerical and/or statistical 

techniques. They can, in one sense, be viewed as similar to nonlinear regression, except that the 

functional form of the fitting equation does not need to be specified a priori. The adoption and 

use of NN modeling techniques in the MEPDG/Pavement-ME Design (NCHRP 2004) has 

especially placed emphasis on the successful use of neural nets in geomechanical and pavement 

systems. 

Given the successful utilization of NN modeling techniques in the previous IHRB projects 

focusing on nondestructive evaluation of Iowa pavements and static backcalculation of pavement 

layer moduli from routine FWD test data (Ceylan et al. 2007, Ceylan et al. 2009, Ceylan et al. 

2013), the research team’s first choice was to employ NN for this study. The ability to “learn” 

the mapping between inputs and outputs is one of the main advantages that make the NNs so 

attractive. Efficient learning algorithms have been developed and proposed to determine the 

weights of the network, according to the data of the computational task to be performed. The 

learning ability of the NNs makes them suitable for unknown and nonlinear problem structures 

such as pattern recognition, medical diagnosis, time series prediction, and other applications 

(Haykin 1999).  

The NNs in this study were designed, trained, validated, and tested using the MATLAB Neural 

Network toolbox (Beale et al. 2011). All of the NNs were conventional two-layer (one hidden 

layer and one output layer) feed-forward networks. Sigmoid transfer functions were used for all 

hidden layer neurons, while linear transfer functions were employed for the output neurons. 

Training was accomplished using the Levenberg-Marquardt (LM) backpropagation algorithm. 

Considerable research has been carried out to accelerate the convergence of learning/training 

algorithms, which can be broadly classified into two categories: (1) development of ad hoc 

heuristic techniques that include such ideas as varying the learning rate, using momentum, and 

rescaling variables; and (2) development of standard numerical optimization techniques.  

The three types of numerical optimization techniques commonly used for NN training include 

the conjugate gradient algorithms, quasi-Newton algorithms, and the LM algorithm. The LM 

algorithm used in this study is a second-order numerical optimization technique that combines 

the advantages of Gauss–Newton and steepest descent algorithms. While this method has better 

convergence properties than the conventional backpropagation method, it requires O(N
2
) storage 

and calculations of order O(N
2
), where N is the total number of weights in a multi-layer 

perceptron (MLP) backpropagation. The LM training algorithm is considered to be very efficient 

when training networks have up to a few hundred weights. Although the computational 

requirements are much higher for each iteration of the LM training algorithm, this is more than 

made up for by the increased efficiency. This is especially true when high precision is required 

(Beale et al. 2011). 

Separate NN models were developed for each of the four E(t) master curve coefficients, c1, c2, 

c3, and c4. Seventy percent of the 100 datasets were used for training, 15% were used for 

validation (to halt training when generalization stops improving), and 15% were used for 
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independent testing of the trained model. As mentioned previously, the highlighted case studies 

considered three input scenarios in the prediction of E(t) master curve coefficients: (1) use only 

D0 time history data as inputs; (2) use D0, D8, and D12 time history data as inputs; and (3) use 

only the differences in magnitudes between D0 and D12 time history data (i.e., Surface 

Curvature Index (SCI) = D0–D12) as inputs. Because the SCI is known to be strongly correlated 

to (static) backcalculated Eac, its usefulness (i.e., differences between D0 and D12 time history 

data) in the backcalculation of E(t) master curve coefficients was evaluated in case study #3. 

Graphical summaries of the NN inverse modeling training curves and correlations between 

observed and predicted data are displayed for all three case studies in Figure 11, Figure 12, and 

Figure 13. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. NN prediction of E(t) master curve coefficients from D0 time history data using 

100 datasets (case study #1): (a) c1, (b) c2, (c) c3, (d) c4 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. NN prediction of E(t) master curve coefficients from D0, D8, and D12 time 

history data using 100 datasets (case study #2): (a) c1, (b) c2, (c) c3, (d) c4 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. NN prediction of E(t) master curve coefficients from differences in magnitudes 

between D0 and D12 time history data (SCI) using 100 datasets (case study #3): (a) c1, (b) 

c2, (c) c3, (d) c4 

In general, the results from the case studies demonstrate that the NNs have the potential to model 

the complex relationships between E(t) master curve coefficients and surface deflection-time 

histories. The use of D0, D8, and D12 time history data, as opposed to the use of D0 time history 

alone, seems to result in relatively higher prediction accuracies of E(t) master curve coefficients. 

The use of differences in magnitudes between D0 and D12 time history data (i.e., SCI) alone as 
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an input in NN inverse modeling did not increase the prediction accuracies and is therefore not 

recommended for future analysis. Future analysis should also consider the effect of including 

deflection-time history data from all sensors in the standard FWD configuration (D0, D8, D12, 

D18, D24, D36, D48, D60, and D72) on the prediction accuracies. 
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PROOF-OF-CONCEPT DEMONSTRATION:COMPREHENSIVE FULL-DEPTH AC 

PAVEMENT ANALYSIS  

Development of Comprehensive Synthetic Database 

The focused case studies carried out and discussed in the previous section established the 

framework for deriving the AC E(t) or |E*| master curve based on a single FWD test performed 

at a single temperature, thereby fulfilling the main objective of this study. In this section, the 

proposed methodology is further explored through a comprehensive forward and inverse analysis 

of full-depth AC. A comprehensive synthetic database consisting of 10,000 datasets was 

generated through batch simulations of the VE forward analysis program by randomly varying 

the inputs within the min-max ranges, summarized in Table 2. 

Table 2. Summary of input ranges used in the generation of 10,000 VE forward analysis 

scenarios for comprehensive full-depth AC analysis 

Input Parameter Min Value Max Value 

Pavement temperature (Tac) 32 deg-F (0 deg-C) 113 deg-F (45 deg-C) 

AC layer thickness (Hac): 5 in. 45 in. 

Subgrade modulus (Esub): 5,000 psi 20,000 psi 

AC Poisson’s ratio (μac): 0.3 (constant) 

Subgrade Poisson’s ratio (μsub): 0.4 (constant) 

c1 0.045 2.155 

c2 1.8 4.4 

c3 -0.523 1.025 

c4 -0.845 -0.38 

a1 -5.380E-4 1.136E-3 

a2 -1.598E-1 -0.770E-1 

 

Graphical comparative summaries (a histogram, box plot, and descriptive statistics) for each of 

the input variables in the synthetic database are displayed in Figure 14 and Figure 15. The case 

studies discussed in the previous section tend to indicate that the deflection-time history data at 

D0, D8, and D12 sensors are necessary inputs for backcalculating the E(t) master curve 

coefficients. As discussed previously, only the first half of the deflection-time history data (i.e., 

corresponding to time intervals 1 to 20 in the x-axis) were considered in the analysis. 
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Figure 14. Graphical statistical summaries of Tac, Hac, and Esub in the comprehensive 

raw synthetic database 

 

Figure 15. Graphical statistical summaries of c1, c2, c3, and c4 in the comprehensive raw 

synthetic database 
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Synthetic Database: Data Pre-processing 

Some anomalies were discovered in the outputs extracted from the results of 10,000 VE forward 

analysis simulations. It was discovered that the E(t) curves generated by considering the upper 

and lower limits of c1, c2, c3, and c4 based on the MSU E(t) database of 100+ AC mixtures can 

result in master curves well outside the database. This can lead to unexpectedly high deflection 

magnitudes, unreasonable deflection time-histories, and sometimes negative deflections. Some of 

these anomalies are captured in the D0, D8, and D12 deflection-time histories (outputs) resulting 

from the 10,000 VE forward runs, depicted in the form of 3-D plots in Figure 16, Figure 17, and 

Figure 18. To overcome these issues, it was decided to include only those scenarios in the 

database where the sum of E(t) sigmoid coefficients c1 and c2 was within certain limits. Varma 

et al. (2013a) used a lower limit of 3.239 and an upper limit of 4.535 based on the MSU database 

of 100+ AC mixtures. These limits are 4.000 and 5.880, respectively, based on the E(t) curves 

generated by the ISU research team using the FHWA mobile lab asphalt mixture database.  

 

Figure 16. D0 deflection-time history (from time interval 1 to 20) outputs from 10,000 VE 

forward analysis simulations 
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Figure 17. D8 deflection-time history (from time interval 1 to 20) outputs from 10,000 VE 

forward analysis simulations 

 

Figure 18. D12 deflection-time history (from time interval 1 to 20) outputs from 10,000 VE 

forward analysis simulations 
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3,338. Graphical comparative summaries for each of the input variables in the processed 

synthetic database are displayed in Figure 19 and Figure 20. The D0, D8, and D12 deflection-

time histories (outputs) from the processed synthetic database captured in Figure 21, Figure 22, 

and Figure 23 appear reasonable.  

 

Figure 19. Graphical statistical summaries of Tac, Hac, and Esub in the processed synthetic 

database 

 

Figure 20. Graphical statistical summaries of c1, c2, c3, and c4 in the processed synthetic 

database 
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Figure 21. D0 deflection-time history (from time interval 1 to 20) outputs in the processed 

synthetic database 

 

Figure 22. D8 deflection-time history (from time interval 1 to 20) outputs in the processed 

synthetic database 
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Figure 23. D12 deflection-time history (from time interval 1 to 20) outputs in the processed 

synthetic database 

Neural Networks Forward Modeling 

Before carrying out NN inverse modeling to map E(t) master curve coefficients from FWD 

deflection-time histories, NN forward modeling was carried out to see how accurately NNs can 

predict the individual deflection-time histories (D0, D8, and D12) based on NN E(t) master curve 

coefficients and other inputs in the processed synthetic database. If successful, the NN forward 

model could also serve as a surrogate model (within the specified input ranges) that could 

replace the VE forward analysis runs.  

Based on a parametric sensitivity analysis, a conventional two-layer (1 hidden layer with 25 

neurons and 1 output layer) feed-forward network was deemed sufficient for forward modeling. 

Sigmoid transfer functions were used for all hidden layer neurons, while linear transfer functions 

were employed for the output neurons. Training was accomplished using the LM 

backpropagation algorithm implemented in the MATLAB NN Toolbox. Separate NN models 

were developed for each of the deflections (3 sensor locations and 20 time intervals). Thus, the 

model inputs were E(t) master curve coefficients (c1, c2, c3, and c4), Tac, Hac, and Esub. 

Seventy percent of the 3,338 datasets were used for training, 15% were used for validation (to 

halt training when generalization stops improving), and 15% were used for independent testing 

of the trained model.  

 

The NN forward modeling regression results for predicting D0, D8, and D12 deflection-time 

histories are summarized in Figure 24, Figure 25, and Figure 26, respectively. As seen in these 

plots, except for the first two or three time intervals, deflection-time histories at all other time 

intervals are predicted by NN analysis with very high accuracy (R-values greater than 0.97). 

Consequently, it was decided to eliminate these (D0-1, D0-2, D0-3, D8-1, D8-2, D8-3, D12-1, 

D12-2, and D12-3) from the input set for the NN inverse modeling discussed in the next section. 
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Figure 24. NN forward modeling regression results for predicting D0 deflection-time 

history data from E(t) master curve coefficients 

 

Figure 25. NN forward modeling regression results for predicting D8 deflection-time 

history data from E(t) master curve coefficients 
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Figure 26. NN forward modeling regression results for predicting D12 deflection-time 

history data from E(t) master curve coefficients 

Neural Networks Inverse Modeling Considering only D0, D8, and D12 

The processed synthetic database consisting of 3,338 input-output scenarios was utilized in 

developing NN inverse models for predicting E(t) master curve coefficients from FWD 

deflection-time histories by considering only D0, D8, and D12 sensors. The inputs, outputs, and 

the generic network architecture details for the NN inverse mapping models are summarized in 

Figure 27. 

 

Figure 27. Inputs, outputs, and generic network architecture details for the NN inverse 

mapping models considering only D0, D8, and D12 
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Generic network architecture: 54-h-1

54 inputs: Tac, Hac, Esub, D0(tj); D8(tj);D12(tj)[j= 4 to 20]
h hidden neurons
1 output: ci (each of the 4 coefficients predicted separately)
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A conventional two-layer (1 hidden layer with 25 neurons and 1 output layer) feed-forward 

network was employed for inverse modeling. Sigmoid transfer functions were used for all hidden 

layer neurons, while linear transfer functions were employed for the output neurons. Training 

was accomplished using the LM backpropagation algorithm implemented in the MATLAB NN 

Toolbox. Separate NN models were developed for each of the E(t) master curve coefficients (c1, 

c2, c3, and c4). Seventy percent of the 3,338 datasets were used for training, 15% were used for 

validation (to halt training when generalization stops improving), and 15% were used for 

independent testing of the trained model. Graphical summaries of the NN inverse modeling 

training curves and correlations between observed and predicted data are displayed for each of 

the E(t) master curve coefficients, c1, c2, c3, and c4 in Figure 28, Figure 29, Figure 30, and 

Figure 31, respectively. 

 

 

Figure 28. NN prediction of E(t) master curve coefficient, c1, from D0, D8, and D12 time 

history data using the processed synthetic database 
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Figure 29. NN prediction of E(t) master curve coefficient, c2, from D0, D8, and D12 time 

history data using the processed synthetic database 
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Figure 30. NN prediction of E(t) master curve coefficient, c3, from D0, D8, and D12 time 

history data using the processed synthetic database 
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Figure 31. NN prediction of E(t) master curve coefficient, c4, from D0, D8, and D12 time 

history data using the processed synthetic database 

Neural Networks Inverse Modeling Considering Data from all FWD Sensors: Partial Pulse 

(Pre-Peak) Time Histories 

The previous analysis considered only time history data from the sensors close to the FWD 

loading plate: D0, D8, and D12. Further analyses were carried out to investigate whether the NN 

predictions could be improved by considering time history data from all the sensors of the 

standard FWD configuration: D0, D8, D12, D18, D24, D36, D48, D60, and D72. These analyses 

considered two scenarios: (1) using only partial (pre-peak) pulse deflection-time history data and 

(2) using full pulse deflection-time history data. This section focuses on the first scenario, while 

the next section presents the results for the second scenario, where the full deflection pulses from 

all FWD sensor time history data are included as inputs. The inputs, outputs, and the generic 

network architecture details for the NN inverse mapping models, considering pre-peak deflection 

pulse time history data (except the first three time steps), are summarized in Figure 32.  
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Figure 32. Inputs, outputs, and generic network architecture details for the NN inverse 

mapping models considering data from all FWD sensors and pre-peak time history data 

The NN modeling approach remained essentially the same as that used for the previous analyses 

(i.e., feed-forward network using the LM backpropagation training algorithm implemented in the 

MATLAB NN Toolbox), with one difference. The hidden neurons were varied (25, 30, 45, and 

60) to determine the best-performance NN architecture. Separate NN models were developed for 

each of the E(t) master curve coefficients (c1, c2, c3, and c4). Seventy percent of the 2,000 

datasets (a subset of the 3,338 datasets used in the previous analyses), were used for training, 

15% were used for validation (to halt training when generalization stops improving), and 15% 

were used for independent testing of the trained model.  

The performances of various NN architectures in predicting E(t) master curve coefficients, c1, 

c2, c3, and c4, from D0, D8, D12, D18, D24, D36, D48, D60, and D72 pre-peak deflection-time 

history data are summarized in Table 3. While 25 or 30 hidden neurons were deemed sufficient 

to achieve best-performance models for three of the E(t) master curve coefficients (c1, c2, and 

c3), 60 hidden neurons were required to predict c4 with reasonable prediction accuracy. 

Compared to the previous NN analyses, which considered only information from D0, D8, and 

D12 sensors, the NN prediction accuracies from the current analyses, which considered pre-peak 

deflection-time history data from all the FWD sensors, have improved in general, especially for 

c1 and c2. The best-performance NN prediction models are highlighted in light blue. 
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Generic network architecture: 156-h-1

156 inputs: Tac, Hac, Esub, Di(tj) [i=0,8,12,18,24,36,48,60,72;j= 4 to 20]
h hidden neurons
1 output: ci (each of the 4 coefficients predicted separately)
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Table 3. NN prediction of E(t) master curve coefficients, c1, c2, c3, and c4, from D0, D8, 

D12, D18, D24, D36, D48, D60, and D72 pre-peak deflection-time history data 

Output NN Arch.  # 

Epochs 

Training 

Perf. 

(MSE) 

Gradient Training 

R 

Validation 

R 

Testing 

R 

All R 

c1 156-25-1 29 0.190 0.063 0.688 0.689 0.628 0.680 

156-30-1 73 0.169 0.248 0.733 0.656 0.673 0.713 

156-45-1 23 0.175 0.229 0.710 0.692 0.651 0.699 

156-60-1 32 0.190 0.082 0.691 0.654 0.670 0.682 

c2 156-25-1 50 0.170 0.417 0.817 0.776 0.789 0.807 

156-30-1 49 0.181 0.188 0.814 0.751 0.760 0.797 

156-45-1 21 0.185 0.246 0.799 0.721 0.768 0.781 

156-60-1 23 0.197 0.056 0.795 0.761 0.724 0.780 

c3 156-25-1 44 0.065 0.171 0.758 0.674 0.648 0.727 

156-30-1 14 0.158 0.588 0.433 0.344 0.268 0.372 

156-45-1 83 0.079 0.925 0.751 0.639 0.640 0.717 

156-60-1 79 0.084 0.208 0.736 0.536 0.635 0.692 

c4 156-25-1 14 0.016 0.001 0.258 0.106 0.207 0.227 

156-30-1 13 0.016 0.040 0.269 0.098 0.223 0.224 

156-45-1 12 0.017 0.071 0.238 0.218 0.220 0.231 

156-60-1 150 0.009 0.090 0.709 0.518 0.516 0.655 

 

Neural Networks Inverse Modeling Considering Data from all FWD Sensors: Full Pulse 

Time Histories 

In this analysis, the full pulse deflection-time history data from all the sensors in the standard 

FWD configuration (D0, D8, D12, D18, D24, D36, D48, D60, and D72) were considered in NN 

inverse modeling. The performances of various NN architectures in predicting E(t) master curve 

coefficients, c1, c2, c3, and c4, from D0, D8, D12, D18, D24, D36, D48, D60, and D72 full 

pulse deflection-time history data are summarized in Table 4. The best-performance NN 

prediction models are highlighted in light blue. The NN prediction accuracies for all four E(t) 

master curve coefficients (c1, c2, c3, and c4) have improved further when considering the full 

pulse deflection-time history data as opposed to considering only pre-peak deflection-time 

history data. 

These results demonstrate the potential of NNs to predict the E(t) master curve coefficients from 

single-drop FWD deflection-time history data. However, the current prediction accuracies are 

not sufficient to recommend these models for practical implementation. This feasibility study has 

identified a number of challenging issues and future research areas that need to be investigated 

thoroughly through a Phase II study, as discussed in the next section. 
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Table 4. NN prediction of E(t) master curve coefficients, c1, c2, c3, and c4, from D0, D8, 

D12, D18, D24, D36, D48, D60, and D72 full pulse deflection-time history data 

Output NN Arch.  # 

Epochs 

Training 

Perf. 

(MSE) 

Gradient Training 

R 

Validation 

R 

Testing 

R 

All R 

c1 

332-25-1 33 0.115 0.129 0.815 0.731 0.714 0.788 

332-30-1 89 0.117 1.660 0.805 0.728 0.718 0.780 

332-45-1 36 0.108 1.160 0.819 0.724 0.664 0.780 

332-60-1 87 0.129 0.038 0.803 0.727 0.727 0.780 

c2 

332-25-1 32 0.145 4.210 0.825 0.800 0.782 0.815 

332-30-1 61 0.163 0.068 0.821 0.781 0.800 0.811 

332-45-1 24 0.183 0.087 0.804 0.773 0.759 0.793 

332-60-1 38 0.170 1.240 0.816 0.778 0.774 0.804 

c3 

332-25-1 40 0.068 1.150 0.759 0.651 0.742 0.739 

332-30-1 33 0.047 0.646 0.820 0.712 0.572 0.765 

332-45-1 36 0.085 0.717 0.734 0.571 0.603 0.689 

332-60-1 94 0.087 0.868 0.729 0.718 0.637 0.713 

c4 

332-25-1 154 0.005 0.060 0.814 0.746 0.737 0.792 

332-30-1 160 0.004 0.007 0.861 0.718 0.645 0.797 

332-45-1 161 0.008 0.209 0.737 0.639 0.681 0.713 

332-60-1 54 0.012 0.132 0.579 0.454 0.516 0.550 
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SUMMARY AND CONCLUSIONS  

The AC dynamic modulus (|E*|) is a key design parameter in the AASHTO MEPDG/Pavement-

ME Design. The standard laboratory procedures for AC dynamic modulus testing and 

development of the master curve require time and considerable resources. The objective of this 

feasibility study was to develop frameworks for predicting the AC dynamic modulus master 

curve from routinely collected FWD time history data. The Iowa DOT is eventually interested in 

documenting the Iowa AC mix damaged master curve coefficients relative to the mix IDs/Station 

Nos., if possible, in the PMIS. This would be of significant use to the city, county, and state 

engineers because the outcome of this research would enable them to look up the damaged 

master curve shape parameters from the PMIS while running a flexible pavement rehabilitation 

analysis and design using MEPDG/Pavement ME Design. As a first and foundational step, this 

feasibility research study focused on establishing frameworks for predicting AC E(t) master 

curve coefficients from FWD time history data. According to the theory of viscoelasticity, if the 

AC relaxation modulus, E(t), is known, |E*| can be calculated (and vice versa) through numerical 

inter-conversion procedures.  

The overall research approach involved the following steps: 

 Conduct numerous VE forward analysis simulations by varying E(t) master curve 

coefficients, shift factors, pavement temperatures, and other layer properties 

 Extract simulation inputs and outputs and assemble a synthetic database 

 Train, validate, and test NN inverse mapping models to predict E(t) master curve coefficients 

from single-drop FWD deflection-time histories 

A computationally efficient VE forward analysis program developed by MSU researchers was 

adopted in this study to generate the synthetic database. The VE forward analysis program 

accepts pavement temperature and layer properties (AC E(t) master curve, Eb/sub, h, μ,) and 

outputs surface deflection-time histories. Several case studies were conducted to establish 

detailed frameworks for predicting the AC E(t) master curve from single-drop FWD time history 

data. Case studies focused on full-depth AC pavements as a first step to isolate potential 

backcalculation issues that are only related to the modulus master curve of the AC layer. For the 

proof-of-concept demonstration, a comprehensive full-depth AC analysis was carried out 

through 10,000 batch simulations of a VE forward analysis program. Anomalies were detected in 

the comprehensive raw synthetic database and were eliminated through imposition of certain 

constraints on the sum of E(t) sigmoid coefficients, c1 + c2.  

NN forward modeling was carried out to see how accurately NNs can predict the individual 

deflection-time histories (D0, D8, and D12) based on NN E(t) master curve coefficients and 

other inputs in the processed synthetic database. If successful, the NN forward model could also 

serve as a surrogate model (within the specified input ranges) that could replace the VE forward 

analysis runs. Except for the first two or three time intervals, deflection-time histories at all other 

time intervals were predicted by NN analysis with very high accuracy (R-values greater than 

0.97). The NN inverse modeling results demonstrated the potential of NNs to predict the E(t) 

master curve coefficients from single-drop FWD deflection-time history data. However, the 
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current prediction accuracies are not sufficient to recommend these models for practical 

implementation. Some recommendations are presented in the next section for an expanded Phase 

II research project to arrive at high-accuracy E(t) master curve backcalculation models.  
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FUTURE RESEARCH RECOMMENDATIONS 

The present feasibility study established a basic NN-based framework for predicting E(t) master 

curve coefficients from single-drop FWD deflection-time history data. It also identified a number 

of limitations, modeling challenges, and additional data needs that need to be investigated 

through a future research study with an expanded scope: 

1. The multilayered VE forward analysis program adopted for this study assumes the AC 

layer as a linear viscoelastic material and unbound layers as linear elastic and predicts the 

behavior of flexible pavement as a (massless) viscoeleastic damped structure (Kutay et al. 

2011). Although it is very computationally efficient, thus facilitating a large number of 

simulations in a very short time, it has limitations in simulating real-world FWD 

deflection-time histories where dynamics resulting from inertial and wave propagation 

effects are often prevalent. According to Varma et al. (2013b), the presence and depth of 

a stiff layer (bedrock) has significant influence on the contributions of dynamics in the 

FWD test. 

An example of the manifestation of this dynamic behavior is the occurrence of time 

delays in the deflection histories with respect to the FWD load pulse (stress wave). In 

order to use the VE forward analysis approach, the deflection pulses need to be shifted to 

the left such that they all coincide with the beginning of the load pulse, as illustrated in 

Figure 33. The use of a time-domain–based dynamic viscoeleastic forward routine is an 

alternative approach to overcome this problem. 

 

Figure 33. An example of time delay (dynamic behavior) in FWD deflection-time histories 

(top) and the shifting of deflection pulses to the left (bottom) (Kutay et al. 2011) 
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2. The proposed NN-based framework computes E(t) master curve coefficients based on 

single-drop FWD test data (i.e., single FWD test performed at a single temperature). 

Using this approach, it is only possible to accurately backcalculate certain portions of the 

E(t), i.e., at high frequencies (short times). Note that the post-peak portion of the 

deflection-time history curve is generally not considered reliable due to FWD integration 

errors, which leaves limited information for backcalculating the entire E(t) master curve. 

Kutay et al. (2011) and Varma et al. (2013a) noted that E(t) (|E*|) can be backcalculated 

accurately up to about t = 0.1 sec (f = 10
-3

 Hz) using the deflection-time histories from a 

typical single-drop FWD test. They further noted that, in order to accurately predict the 

entire E(t) master curve, longer pulse durations need to be employed in the FWD test 

(which will result in long-duration deflection-time history) or FWD tests need to be 

conducted at different pavement temperatures (during different times of the day or 

seasons) and use the concept of time-temperature superposition. Varma et al. (2013a) 

concluded that deflection-time histories from FWD tests conducted between 68–104 °F 

(20–40 °C) are useful in accurately estimating the entire E(t) or |E*| master curve.  

If the prediction of E(t) from single-drop FWD test data is desirable (which is most often 

the case), Varma et al. (2013b) recommends using deflection-time history data from 

FWD tests conducted under an AC layer temperature gradient of preferably 41 °F (5 °C) 

or more. Future research should consider the use of the enhanced VE forward analysis 

tool recommended by Varma et al. (2013b) for synthetic database generation because it 

attempts to simulate more realistic FWD test conditions with respect to the presence of an 

uneven temperature distribution across the depth of the AC layer. 

3. This feasibility study was restricted to the prediction of E(t) master curve coefficients 

based on single-drop FWD test performed at a single temperature. Consequently, the 

prediction of time-temperature superposition shift factors (a1 and a2) was omitted. Again, 

by including the AC temperature profile information at the time of FWD testing in the 

generation of the synthetic database using the enhanced VE forward analysis program 

proposed by Varma et al. (2013b), it may be possible to backcalculate the entire E(t) 

master curve, including the shift factors, from FWD deflection-time histories. 

4. Apart from the use of NNs for the inverse analysis of viscoelastic asphalt layer properties 

from FWD time history data, future research should also consider the use of an 

evolutionary global optimization technique in combination with the VE forward solver. 

For instance, Varma et al. (2013b) proposed the use of a GA-based optimization scheme 

in combination with a VE forward solver to backcalculate E(t) master curve coefficients 

and shift factors from FWD time history data. Such an approach involves minimizing the 

differences between the responses calculated from the forward analysis and those from 

the FWD test by varying the pavement layer properties until a best match is achieved. 

The researchers for the present project have successfully employed this approach for 

static backcalculation with different evolutionary optimization techniques such as GA 

(Gopalakrishnan 2012), particle swarm optimization (PSO) (Gopalakrishnan 2010), 

covariance matrix adaptation evolution strategy (CMA-ES) (Gopalakrishnan and Manik 
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2010), and shuffled complex evolution (SCE) (Gopalakrishnan and Kim 2010, Ceylan 

and Gopalakrishnan 2014). 

The overall proposed approach for backcalculating the AC E(t) master curve from FWD 

deflection-time history data using an evolutionary optimization search scheme is 

illustrated in Figure 34. Note that the use of trained NN-based surrogate forward analysis 

models in place of actual forward calculations during the backcalculation can 

significantly speed up the process, especially when the forward solver is time intensive. 

Another promising approach, in terms of speeding up the convergence of the global 

optimizer, is to use the NN inverse mapping model solutions of E(t) master curve 

coefficients as seed moduli for the global optimization. 

 

Figure 34. Overall proposed approach for backcalculating the AC E(t) master curve from 

FWD deflection-time history data using an evolutionary global optimization search scheme 
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