Lifecycle Cost Analysis of Internally Cured Jointed Plain Concrete Pavement

Final Report November 2017

Sponsored by

Iowa Highway Research Board (Part of IHRB Project TR-676) Iowa Department of Transportation (Part of InTrans Project 14-499)

Tech Cente

About the National CP Tech Center

The mission of the National Concrete Pavement Technology Center is to unite key transportation stakeholders around the central goal of advancing concrete pavement technology through research, tech transfer, and technology implementation.

Disclaimer Notice

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Iowa State University Non-Discrimination Statement

Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, or status as a U.S. veteran. Inquiries regarding non-discrimination policies may be directed to Office of Equal Opportunity, 3410 Beardshear Hall, 515 Morrill Road, Ames, Iowa 50011, Tel. 515–294–7612, Hotline: 515–294–1222, email eooffice@iastate.edu.

Iowa Department of Transportation Statements

Federal and state laws prohibit employment and/or public accommodation discrimination on the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual orientation or veteran's status. If you believe you have been discriminated against, please contact the Iowa Civil Rights Commission at 800-457-4416 or the Iowa Department of Transportation affirmative action officer. If you need accommodations because of a disability to access the Iowa Department of Transportation's services, contact the agency's affirmative action officer at 800-262-0003.

The preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its "Second Revised Agreement for the Management of Research Conducted by Iowa State University for the Iowa Department of Transportation" and its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog N	0.	
Part of IHRB Project TR-676				
4. Title and Subtitle		5. Report Date		
Lifecycle Cost Analysis of Internally Cure	November 2017			
		6. Performing Organization Code		
7. Author(s)	8. Performing Organization Report No.			
Payam Vosoughi (orcid.org/0000-0003-43	317-0424), Steven Tritsch	Part of InTrans Project 14	-499	
(orcid.org/0000-0002-2938-5915), Halil (Ceylan (orcid.org/0000-0003-1133-			
9. Performing Organization Name and	Address	10. Work Unit No. (TRA	(IS)	
National Concrete Payement Technology	Center			
Iowa State University		11 Contract or Grant N	Í0	
2711 South Loop Drive, Suite 4700		11. Contract of Grant IV	0.	
Ames, IA 50010-8664				
12. Sponsoring Organization Name and	Address	13. Type of Report and	Period Covered	
Iowa Highway Research Board		Final Report		
800 Lincoln Way		14. Sponsoring Agency	Code	
Ames, IA 50010		Part of IHRB Project TR-	676	
15. Supplementary Notes				
Visit www.intrans.iastate.edu and www.cj	ptechcenter.org for color pdfs of this and o	ther research reports.		
16. Abstract				
Internal curing is a technique that has been	n developed to prolong cement hydration b	y providing internal water r	eservoirs in a concrete	
mixture that do not adversely affect the co for more durable structural concretes that	ncrete mixture's fresh or hardened physica were resistant to shrinkage cracking.	l properties. Internal curing	grew out of the need	
This report covers an investigation into the compares internally cured (IC) jointed pla pavement designed for use in Dubuque, Ice	e relative costs and benefits of internal curi in concrete pavement to conventionally cu wa.	ing using a lifecycle cost an red (CC) pavement. This an	alysis (LCCA) that alysis was based on a	
According to the analysis, IC concrete ma	kes it possible to design pavement with de	creased thickness or increas	ed joint spacing or to	
reduce the required maintenance over the	analysis period, which results in savings in	initial construction cost. Ev	ven if the thickness does	
not change, IC pavement requires less main life. However, the initial construction cost	intenance than a comparable CC pavement	to provide satisfactory perf	ormance over its service	
Considering all of the evidence, the net pr	esent value of IC pavement is less than that	t of CC pavement.	ne same unckness.	
	L	1		
17. Key Words		18. Distribution Stateme	ent	
concrete mix design-concrete pavement	performance—conventionally cured	No restrictions.		
concrete—internally cured concrete—join cost analysis—lightweight fine aggregate	ted plain concrete pavement—lifecycle			
19. Security Classification (of this	20. Security Classification (of this	21. No. of Pages	22. Price	
report)	page)			
Unclassified.	80	NA		

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

LIFECYCLE COST ANALYSIS OF INTERNALLY CURED JOINTED PLAIN CONCRETE PAVEMENT

Final Report November 2017

Principal Investigator Peter Taylor, Director National Concrete Pavement Technology Center, Iowa State University

Co-Principal Investigator

Halil Ceylan, Director Program for Sustainable Pavement Engineering and Research (ProSPER) Institute for Transportation, Iowa State University

> **Research Assistant** Payam Vosoughi

Authors Payam Vosoughi, Steven Tritsch, Halil Ceylan, and Peter Taylor

> Sponsored by Iowa Highway Research Board and Iowa Department of Transportation (Part of IHRB Project TR-676)

Preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its Research Management Agreement with the Institute for Transportation (Part of InTrans Project 14-499)

> A report from **National Concrete Pavement Technology Center Iowa State University** 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 Phone: 515-294-5798 / Fax: 515-294-0467 www.intrans.iastate.edu

TABLE OF CONTENTS

ACKNOWLEDGMENTS	vii
INTRODUCTION	1
Background	1
MATERIALS AND PAVEMENT PROPERTIES	3
DESIGN AND ANALYSIS OF PAVEMENTS	6
Design of Control and Internally Cured Pavements Improving the Performance of Pavements by Utilizing IC Concrete	6 8
LIFECYCLE COST ANALYSIS OF PAVEMENTS	11
SENSITIVITY ANALYSIS	19
CONCLUSIONS	21
REFERENCES	23
APPENDIX: PAVEMENT DESIGN USING AASHTOWARE-PAVEMENT ME DESIGN V2.3.1+66	25

LIST OF FIGURES

Figure 1. Schematic view of the pavement	5
Figure 2. IRI of conventionally cured pavements over design life	7
Figure 3. IRI of internally cured pavements over design life	8
Figure 4. 7 in. thick conventionally and internally cured pavement	9
Figure 5. 8 in. thick conventionally and internally cured pavement	9
Figure 6. 9 in. thick conventionally and internally cured pavement	10
Figure 7. 10 in. thick conventionally and internally cured pavement	10
Figure 8. Net present value of \$1 million over the long term	11
Figure 9. Lifecycles of two pavements over an analysis period	12
Figure 10. Cost stream over the lifecycle of a pavement	13
Figure 11. Lifecycle of pavements with low AADTT	14
Figure 12. Lifecycle of pavements with high AADTT	14
Figure 13. Distress performance of the pavements with low AADTT over a long time	15
Figure 14. Distress performance of the pavements with high AADTT over a long time	16

LIST OF TABLES

3
3
4
4
7
.15
16
.17
18
.19
.19
.20

ACKNOWLEDGMENTS

The research team would like to thank the Iowa Highway Research Board and the Iowa Department of Transportation for sponsoring this research. The team appreciated the contributions of Orhan Kaya in conducting this part of the study.

INTRODUCTION

The road transportation system in the US plays a fundamental role for the traveling public and in the movement and exchange of goods. Therefore, it is essential to invest wisely in building new roads and maintaining the existing ones.

An approach to increasing the longevity of concrete pavements is to include lightweight fine aggregate (LWFA) in the mixture for the purpose of internal curing (Bentz and Snyder 1999, Cusson et al. 2010). This report covers an investigation into the relative costs and benefits of this approach using a lifecycle cost analysis (LCCA) that compares internally cured (IC) jointed plain concrete pavement to conventionally cured (CC) pavement. This analysis was based on a pavement designed for use in Dubuque, Iowa.

Background

Water has two different roles in concrete. The first is to make the fresh concrete workable, and the second is the hydration of the cementitious system (Mehta and Monteiro 2013). The ratio of water to cementitious materials (w/cm) in the fresh mixture significantly affects the mechanical and durability properties of concrete (Mehta and Monteiro 2013); consequently, efforts are applied to ensure that the w/cm ratio does not exceed specified limits while still maintaining workability. However, if the w/cm ratio is below about 0.40, the water in the system is likely to be insufficient to fully hydrate all of the cementitious materials, and the pores may dry out prematurely, potentially leading to increased shrinkage and the associated risks of warping and cracking.

The main concept behind internal curing is to provide water reservoirs inside the concrete matrix (Villarreal 2008). Therefore, when water is required for hydration, it can be provided from the uniformly distributed, small, reservoirs (Cusson and Margeson 2010, Schlitter et al. 2010).

Cusson and Margeson (2010) demonstrated that internal curing might lead to 20% higher calcium silicate hydrate (C-S-H) content at 28 days using thermal gravimetric analysis (TGA). In addition, the modulus of elasticity (MOE) is decreased (Babcock and Taylor 2015) leading to reduced stresses under shrinkage strains (Shah and Weiss 2000).

The goal of internal curing is to provide the water needed to keep the internal moisture of earlyage concrete above 90% by replacing about 20% to 25% of the fine aggregate with saturated LWFA (Bentur et al. 2001, Schlitter et al. 2010).

Reported benefits include the following:

- Reduced shrinkage
- Reduced moisture gradient (Jeong and Zollinger 2004, Wei and Hansen 2008) and so a reduced risk of warping
- Decreased fluid transport (Zhutovsky and Kovler 2012)

• Improved resistance to cycles of freezing and thawing (Cusson et al. 2010, Bentz and Weiss 2011, Schlitter et al. 2010, Zhutovsky and Kovler 2012)

LCCA is a tool to assist in decision-making between alternatives based on determining their relative costs over a period of time. It evaluates overall long-term costs including initial, maintenance, rehabilitation, user, and salvage costs (Walls and Smith 1998).

The work reported here is an analysis of the relative costs and benefits of using internal curing for local pavements with low and medium traffic in Iowa.

MATERIALS AND PAVEMENT PROPERTIES

The proportions of the concrete mixtures used for this analysis are shown in Table 1.

Materials	Value
Cementitious material content	550 lb/yd ³
Coarse aggregate content	1,479 lb/yd ³
Fine aggregate content	1,490 lb/yd ³
Water to cement ratio	0.43

Table 1. Concrete mixture proportions

The proportions were assumed to be the same for both the IC and CC mixtures. Table 2 shows the properties of the CC and IC concrete mixtures used for the analysis.

Concrete Properties	Conventionally Cured Concrete	Internally Cured Concrete
Concrete unit weight	144 lb/ft ³	138.5 lb/ft ³
Concrete coefficient of thermal expansion	4.8 in./in./°F	4.3 in./in./°F
Concrete modulus of elasticity	4.3×10 ⁶ psi	3.95×10 ⁶ psi
Concrete compressive strength	6,050 psi	6,070 psi
Ultimate shrinkage	611×10 ⁻⁶ in./in.	592×10 ⁻⁶ in./in.
Coarse aggregate type	Limestone	Limestone
Zero stress temperature	101.9°F	101.9°F
Concrete Poisson's ratio	0.2	0.2
Slump	1–3 in.	1–3 in.

 Table 2. Properties of CC and IC concretes

Based on reported data, the risk of early-age cracking in IC concrete is reduced in comparison to the risk in CC concrete.

The researchers conducted the LCCA for eight different pavements in Iowa: control and IC pavements, 15 and 20 ft joint spacings, and 400 and 1,500 average annual daily truck traffic (AADTT). The design of the pavements (selected based on the results of analyzing 220 pavements by AASHTOWare Pavement ME 2.3.1+66) is shown in Table 3. (Additional details are presented in the appendix).

Code	Thickness (in.)	Joint Spacing (ft)	AADTT	Dowel Bar Diameter (in.)
CC-8-15	8	15	400	1.25
CC-8-20	8	20	400	1.25
CC-10-15	10	15	1,500	1.5
CC-10-20	10	20	1,500	1.5
ICC-7-15	7	15	400	1
ICC-7-20	7	20	400	1
ICC-9-15	9	15	1,500	1.5
ICC-9-20	9	20	1,500	1.5

Table 3. Pavement designs

The properties used in the design of the pavements compared in this study are shown in Table 4.

Pavement Properties	Value
Location	Dubuque, IA
Design life	30 yrs
Analysis period	40
Design reliability	90 %
Base layer thickness	10 in.
Joint spacing	15 and 20 ft
Erodibility index	2
Subgrade layer resilient modulus	10,000 psi
Base layer resilient modulus	38,000 psi
Permanent curling and warping effective temperature gradient	-10°F

Table 4. Basic design properties of the pavements

The analysis period was selected to be longer than the pavement design life to see the benefits of utilizing IC concrete over the long-term. Joint spacing and dowel diameter were selected based on what are common in Iowa. An effective temperature gradient of -10°F was assumed to simultaneously simulate the effects of both curling and warping on the pavements. The schematic view of the intended pavement is illustrated in Figure 1.

Figure 1. Schematic view of the pavement

As shown, the pavement included two 12 ft lanes.

DESIGN AND ANALYSIS OF PAVEMENTS

Two hundred twenty different pavement designs were analyzed based on the mechanisticempirical method using AASHTOWare Pavement ME software version 2.3.1+66 (AASHTO 2015). The materials and pavement structure discussed in the previous chapter were selected to investigate the effects of internal curing on the performance of pavements. Two different slab thicknesses (8 and 10 in.) were compared for two joint spacings (15 and 20 ft) and two different curing methods (CC and IC).

The pavement performance parameters assessed were International Roughness Index (IRI), joint faulting, and transverse cracking at two reliabilities (50% and 90%). The initial IRI value was assumed to be 63 in. per mile for 50% reliability and 85 in. per mile for 90% reliability in all analyses. All pavements were designed based on a 30-year analysis. The LCCA was conducted based on a 40-year analysis.

There are two main approaches to show the benefits of IC in the design of pavements. The first approach is to decrease the minimum thickness of pavements required to achieve the minimum performance at the end of the design period, leading to savings in materials and significantly decreasing the initial construction costs without compromising performance. The second approach is to assess the improvement in the overall performance of pavements constructed using IC concrete. Although the initial construction costs may be higher, less maintenance would be required over time, saving money over the analysis period.

Design of Control and Internally Cured Pavements

Internal curing improves some hardened properties of concrete mixtures, leading to improved pavement performance. The performance measurements (IRI, joint faulting, and transverse cracking) of all conventionally and internally cured pavements at two reliabilities (50% and 90%) are shown in Table 5.

	90% Reliability			50% Reliability			
Code	IRI (in./mile)	Joint Faulting (in.)	Transverse Cracking (%)	IRI (in./mile)	Joint Faulting (in.)	Transverse Cracking (%)	
CC-8-15	158	0.05	1.9	113	0.02	0.0	
CC-8-20	160	0.06	4.1	115	0.02	0.3	
CC-10-15	168	0.06	1.0	119	0.03	0.0	
CC-10-20	174	0.09	4.3	125	0.05	0.3	
ICC-7-15	171	0.07	3.3	121	0.03	0.1	
ICC-7-20	170	0.08	4.6	122	0.04	0.4	
ICC-9-15	165	0.06	1.0	117	0.02	0.0	
ICC-9-20	168	0.08	2.4	120	0.04	0.0	

Table 5. Distress performance of the designed pavements at the age of 30 years

The minimum thicknesses satisfying the required performance limits for 30 years were determined. The results indicated that internal curing may allow a decrease in the minimum thickness from 8 and 10 in. to 7 and 9 in., respectively. Figure 2 and Figure 3 illustrate the increase in the IRI value over the design life for both CC and IC concrete, respectively.

Figure 2. IRI of conventionally cured pavements over design life

Figure 3. IRI of internally cured pavements over design life

The results demonstrate that using IC concrete slightly compensates for the effect of increasing joint spacing from 15 to 20 ft on the ultimate IRI value.

Slab transverse cracking is significantly dependent on both joint spacing and thickness. As the results demonstrate, IC can mitigate some transverse cracking as the joint spacing is increased from 15 to 20 ft.

Improving the Performance of Pavements by Utilizing IC Concrete

Internally cured concrete typically has a lower coefficient of thermal expansion (CTE), lower modulus of elasticity (MoE), higher compressive strength, lower unit weight, and lower ultimate shrinkage. Better overall distress performance is therefore expected for IC pavements over their design life. The results shown in Figure 4 through Figure 7 show that using IC concrete leads to higher overall performance and a decreasing ultimate IRI value.

Figure 4. 7 in. thick conventionally and internally cured pavement

Figure 5.8 in. thick conventionally and internally cured pavement

Figure 6. 9 in. thick conventionally and internally cured pavement

Figure 7. 10 in. thick conventionally and internally cured pavement

LIFECYCLE COST ANALYSIS OF PAVEMENTS

LCCA started to be used by state agencies in the 1950s for cost evaluations and to compare proposed pavement systems (AASHTO 1960). LCCA is a form of economic analysis used to evaluate long-term economic efficiency among alternative investment options. Different pavement types, qualities of pavement, effects on the motoring public, and maintenance and rehabilitation costs should be considered in this type of analysis (Wilde et al. 1999).

Note there is also an approach called benefit/cost (B/C) analysis; however, it is not generally recommended for pavement analysis because of the difficulty of determining the benefits and costs for use in developing B/C ratios (Walls and Smith 1998).

Economic analysis focuses on the relationship between construction, maintenance, and rehabilitation costs; timings of costs; and discount rates employed. Once all costs and their timings have been determined, future costs are discounted to the base year and added to the initial cost to determine the net present value (NPV) for the LCCA alternatives. The basic NPV equation for discounting discrete future amounts at various points in time back to some base year is as follows (West et al. 2013):

$$NPV = Initial \ Construction \ Cost + \sum_{k=1}^{N} Rehabilitation \ Cost_k \left[\frac{1}{(1+i)^{n_k}}\right] - Salvage \ Value \left[\frac{1}{(1+i)^{n_k}}\right]$$
(1)

where:

i = discount raten = year of expenditure

The same concept is demonstrated in Figure 8, which shows how NPV decreases as additional years of spending are applied.

Figure 8. Net present value of \$1 million over the long term

The discount rates employed in LCCA should reflect historical trends over long periods of time. The US Office of Management and Budget (OMB) has suggested that the real discount rate, which can be used for discounting constant-dollar flows, for 30-year cost-effectiveness analysis can be assumed to be equal to 0.7 (Darman 1992). In this investigation, the discount rate was selected to be equal to 1%, but a sensitivity analysis was also performed to see the effects of different discount rates because some other discount rates are also recommended for conducting LCCAs of pavements in the US (Walls and Smith 1998, Jawad and Ozbay 2006).

The LCCA period is the period over which future costs are evaluated. This period should be long enough to reflect long-term cost differences associated with reasonable design strategies. The analysis period should generally be long enough to see at least one maintenance or major rehabilitation activity over the pavement life, and the period can also be selected based on the requirements of the department of transportation. Figure 9 demonstrates the lifecycles of two different pavements over an analysis period; Alternative A has a higher initial cost but lower maintenance expenses than Alternative B.

Figure 9. Lifecycles of two pavements over an analysis period

Routine annual maintenance costs usually do not change significantly and have a marginal effect on the total NPV of pavements compared to initial construction or major rehabilitation costs, particularly when discounted over 30- to 40-year analysis periods.

Salvage value represents the value of an investment alternative at the end of the analysis period. Residual value and residual serviceable life are two essential components of salvage value.

Residual value refers to the net value from recycling the pavement material. The differential residual values among pavement design strategies are usually not very significant and tend to have little effect on LCCA results when discounted over the entire analysis period.

Residual serviceable life represents the more significant component of salvage value and is the remaining life in a pavement alternative at the end of the analysis period. Residual serviceable life is primarily used to account for differences in remaining pavement life between alternative pavement design strategies at the end of the analysis period.

Figure 10 depicts the entire pavement cost stream over the analysis period, including initial construction, minor and routine maintenance, and major rehabilitation costs, as well as salvage value at the end of the period.

Figure 10. Cost stream over the lifecycle of a pavement

All of these values should be estimated and discounted to calculate NPV in the base year. Then, using the NPV, alternatives can be compared with each other.

For this study, all phases of the pavement lifecycle were considered (and costs included raw material costs) to find the differential costs among all CC and IC pavements where previously indicated.

A performance parameter of a pavement that can be used to study how the pavement behaves over the analysis period is IRI. The threshold value at which the pavement is assumed to have failed is 172 in. per mile. Maintenance should be conducted well before the pavement reaches the threshold value because delayed maintenance significantly increases maintenance costs. Therefore, it is assumed that major maintenance is required when the IRI value of the pavement reaches a specific threshold. This threshold is assumed to be 130 and 140 in. per mile for pavements with 1,500 and 400 AADTT, respectively, because a higher IRI value is acceptable for county roads with lower traffic levels.

The smoothness of the pavement would be significantly improved after conducting major maintenance, so it is assumed that the IRI value will decrease to half (65 and 70 in. per mile for pavements with 1,500 and 400 AADTT, respectively). The IRI value after maintenance may be lower than the initial value because maintenance may mitigate some of the initial curling and warping that may occur at very early ages.

The lifecycle of pavements with low AADTT that are designed for low-volume primary routes and county roads is illustrated in Figure 11.

Figure 11. Lifecycle of pavements with low AADTT

The lifecycle of pavements designed for higher AADTT is represented in Figure 12.

Figure 12. Lifecycle of pavements with high AADTT

The figures indicate that all eight pavements are in acceptable condition over the entire analysis period with one major maintenance activity.

Regarding the 7 in. thick IC pavement in Figure 11, the rate of increase of the IRI value is higher than that of an 8 in. thick CC pavement requiring major maintenance about 1.5 years sooner, and the ultimate IRI value is higher (yielding a lower salvage value).

However, decreasing the thickness of a 10 in. thick CC pavement by 1 in. using IC concrete will not reduce the performance, as demonstrated in Figure 12. In other words, a 9 in. thick IC pavement has a lower rate of increase of the IRI value, leading to maintenance being required at later ages, and the ultimate IRI value is even less than that of a 10 in. thick CC pavement.

Table 6 summarizes the time of the first major maintenance for each pavement as well as the residual serviceable life after the analysis period (40 years).

		Low A	ADTT		High AADTT			
	CC Pavement		IC Pav	ement	CC Pavement		IC Pavement	
		Jo			acing (ft)			
	15	20	15	20	15	20	15	20
First major maintenance	22.25	21.92	20.08	20.25	15.75	14.58	16.25	15.75
Residual serviceable life	25.25	22.92	12.75	14.00	17.67	13.17	19.25	17.90

Table 6. Maintenance time and residual serviceable life of all pavements

Because the residual value at the end of the analysis period is not very significant and is almost constant for all scenarios, it was not considered in this study. Figure 13 and Figure 14 demonstrate the distress performance of pavements over a long time.

Figure 13. Distress performance of the pavements with low AADTT over a long time

Figure 14. Distress performance of the pavements with high AADTT over a long time

The ideal maintenance schedule incurs the minimum cost while letting the pavement reach the maximum allowable distress (in terms of IRI) at the end of the analysis period. The extra paid for maintenance that results in a higher residual serviceable life should be refunded so that all pavements can be evaluated in a comparable condition. For this purpose, the salvage value at the end of the analysis period can be calculated by considering the maintenance cost in proportion to the ratio of the residual service life to the serviceable life after the maintenance.

To internally cure the concrete, 20% of the normal-weight fine aggregate (NWFA) had been replaced by the same volume of LWFA, which was about 0.126 yd³ of LWFA per yd³ of IC concrete (170 lb/yd^3).

Considering all expenses (including transportation and presaturation of LWFA), the total cost of NWFA and LWFA were estimated to be $24/yd^3$ and $54/yd^3$, respectively, in Iowa. Therefore, the incremental cost for the construction of a unit area of pavement was assumed to be as shown in Table 7.

Total Construction Cost (\$/yd ²)	7 in. Thickness	8 in. Thickness	9 in. Thickness	10 in. Thickness	
CC pavement	28	30	32	34	
IC pavement	29	31	33	35	

Table 7. Total construction costs of pavements

The total construction cost of a pavement with 15 ft joint spacing is $0.5 \text{ }^{/}\text{yd}^2$ more expensive than that of a pavement with 20 ft joint spacing.

It was assumed that the costs of transporting, placing, and externally curing the two different mixtures would be almost equal.

The initial construction costs of the pavements were estimated based on the surface area of the roadway using Equation 2.

 $Initial \ construction \ cost = \ Number \ of \ lanes \ \times \ Lane \ width \ \times \\ Length \ of \ the \ pavement \ \times \ Total \ construction \ cost$ (2)

The investigated pavement has two 12 ft lanes, and the total length of the pavement is equal to 1 mile.

As a practical assumption, it was assumed that maintenance would be the same for both the conventionally and internally cured pavements. Diamond grinding should be conducted on the whole area of the pavement when programming major maintenance, and 1% of the area should be considered for patching at the same time. The cost of diamond grinding and patching were assumed to be \$3 and \$100, respectively, per yd² of the surface of the pavements.

Initial construction and maintenance costs, as well as the salvage and net present values, are shown in Table 8.

	Initial	Major Maintenance		Resid	Net	
	Construction Cost (\$)	Cost (\$)	Discounted Cost (\$)	Value (\$)	Discounted Value (\$)	Present Value (\$)
CC-8in-15ft-1.25in	429,440	56,320	45,135	39,460	26,504	448,071
CC-8in-20ft-1.25in	422,400	56,320	45,283	37,690	25,314	442,369
CC-10in-15ft-1.5in	485,760	56,320	48,151	27,978	18,792	515,119
CC-10in-20ft-1.5in	478,720	56,320	48,714	30,086	20,207	507,227
ICC-7in-15ft-1in	415,360	56,320	46,120	28,944	19,440	442,040
ICC-7in-20ft-1in	408,320	56,320	46,042	23,395	15,713	438,649
ICC-9in-15ft-1.5in	471,680	56,320	47,912	31,934	21,449	498,143
ICC-9in-20ft-1.5in	464,640	56,320	48,151	30,445	20,448	492,342

Table 8. Construction and maintenance costs and NPVs of alternatives

As shown, the initial construction costs of the IC pavements are about 3.2% more expensive on average than the initial construction costs of the CC pavements with the same thickness. However, IC concrete has improved hardened properties, which allows for the use of a reduced thickness. Therefore, the initial construction cost of IC pavement with a reduced thickness may be decreased by a total of 3.1%.

Table 9 shows the percent savings in NPV when using IC concrete and a reduced thickness in the design of the pavement.

Table 9. Savings in NPV when using IC concrete

	ICC-7in-15ft-1in	ICC-7in-20ft-1in	ICC-9in-15ft-1.5in	ICC-9in-20ft-1.5in
Savings in NPV (%)	1.35	0.84	3.30	2.93

According to the literature, some researchers (Rao and Darter 2013) have assumed that the rehabilitation and maintenance expenses of IC pavements are about 15% lower than those of comparable CC pavements of the same thickness; however, to be on the safe side, this study assumes the same maintenance costs for all pavements.

Although the NPVs of the CC and IC pavements are nearly the same, other key benefits of IC pavements that cannot be accounted for in LCCA should also be considered. These include improving F-T resistance, impermeability, curling and warping behavior, and plastic shrinkage.

SENSITIVITY ANALYSIS

Sensitivity analysis is a tool to study the effects of any uncertainty in the defining input parameters on the results. This chapter looks at the effects of changing the total construction cost, discount rate, and maintenance costs on the LCCA results.

Total construction cost covers all the expenses to build the pavements, including raw materials, transportation, placement, and curing. Table 7 shows the assumed total construction costs for CC and IC pavements with different thicknesses. A sensitivity analysis, presented in Table 10, helps to elucidate the effects of any uncertainty in the evaluation of these values.

	Relati	Relative Total Construction Cost					
	0.8	0.9	1	1.1	1.2		
ICC-7in-15ft-1in	0.89	1.14	1.35	1.52	1.66		
ICC-7in-20ft-1in	0.25	0.58	0.84	1.06	1.24		
ICC-9in-15ft-1.5in	3.39	3.34	3.30	3.26	3.23		
ICC-9in-20ft-1.5in	2.93	2.93	2.93	2.94	2.94		

Table 10. Sensitivity of the savings in NPV to total construction cost

The results indicate that although any variation in the total construction cost does not have a significant effect on the savings in NPV of the pavements with higher AADTT values, the savings in NPV of the 7 in. thick pavements were significantly affected by variations in the total construction cost. Savings in NPV resulting from the use of IC concrete may be increased by 2 to 5 times if the total construction cost is varied $\pm 20\%$ from the original assumption.

The discount rate suggested by the OMB for an LCCA with a 30-year analysis period is equal to 0.7%. As shown in Table 11, increasing the discount rate leads to a significant increase in savings if IC concrete is used for pavements with low AADTT values. The reason is that reducing the thickness of pavements with a low initial thickness leads to a relatively lower level of performance over the pavement's lifetime. Therefore, maintenance is required earlier, and the discounted cost of maintenance is reflected in the NPV.

Table 11. Sensitivity of the savings in NPV to discount rate

		Net Present Value (\$)				
	0	0.7	1	2	3	5
ICC-7in-15ft-1in	1.05	1.26	1.35	1.61	1.84	2.22
ICC-7in-20ft-1in	0.41	0.72	0.84	1.21	1.53	2.04
ICC-9in-15ft-1.5in	3.33	3.31	3.30	3.26	3.23	3.17
ICC-9in-20ft-1.5in	2.86	2.91	2.93	2.99	3.03	3.08

Another important parameter that can significantly affect LCCA results is the maintenance cost, which is difficult to estimate accurately. IC concrete is generally considered to have greater durability and need less maintenance than CC concrete; nevertheless, to be on the safe side, this study assumed that maintenance costs are the same for both alternatives. Table 12 shows the savings in NPV due to the use of IC concrete for different relative maintenance costs (relative to the maintenance cost assumed for this study).

	Rela	Relative Maintenance Cost				
	0.8	0.9	1	1.1	1.2	
ICC-7in-15ft-1in	1.72	1.53	1.35	1.16	0.98	
ICC-7in-20ft-1in	1.32	1.08	0.84	0.60	0.37	
ICC-9in-15ft-1.5in	3.22	3.26	3.30	3.33	3.37	
ICC-9in-20ft-1.5in	2.94	2.94	2.93	2.93	2.93	

Table 12. Sensitivity of the savings in NPV to maintenance cost

This analysis demonstrates that the maintenance cost has a more significant effect on the savings in NPV of pavements with lower thicknesses (and lower AADTT values). The savings that result from using IC pavements are substantially decreased by the increase in maintenance cost, but the minimum savings are still positive even for a 20% higher maintenance cost.

CONCLUSIONS

Internal curing is an approach that allows concrete mixtures to deliver improved mechanical and durability properties that can be accounted for in the pavement design. IC concrete makes it possible to design pavement with decreased thickness or increased joint spacing or to reduce the required maintenance over the analysis period.

A variety of different alternatives were studied in this investigation to determine the advantages and disadvantages of using IC concrete in pavements. Based on the data collected, the following conclusions can be drawn:

- It is possible to design 8 and 10 in. thick pavement with 1 in. reduced thickness using IC concrete compared to conventionally cured concrete.
- IC pavement with the same thickness as CC pavement exhibits improved distress performance over time and requires less maintenance at later ages to provide satisfactory performance over its service life.
- Using IC concrete reduces the negative effects of increasing joint spacing on the distress performance of pavement over time by decreasing CTE, MoE, and ultimate shrinkage while at the same time increasing the concrete's strength.
- The initial construction cost of IC pavements in Iowa may be about 3.2% higher than that of CC pavements with the same thickness. However, the initial construction cost can be reduced by 3.1% by decreasing the thickness of the pavement when utilizing IC concrete.
- The NPV of IC pavement is slightly lower than that of CC pavement, between 0.84% and 3.3% for different scenarios. These values exclude potential savings due to improvements in plastic shrinkage, F-T resistance, impermeability, moisture, and thermal gradient over the depth of the pavement.

REFERENCES

- AASHTO. 1960. *Road User Benefit Analyses for Highway Improvements*. American Association of State Highway Officials Committee on Planning and Design Policies, Washington, DC.
- AASHTO. 2015. Mechanistic-Empirical Pavement Design Guide (MEPDG): A Manual of Practice. American Association of State Highway Transportation Officials, Washington, DC.
- Babcock, A. and P. C. Taylor. 2015. *Impacts of Internal Curing on Concrete Properties Literature Review*. National Concrete Pavement Technology Center, Iowa State University, Ames, IA.
- Bentur, A., S-i. Igarashi, and K. Kovler. 2001. Prevention of autogenous shrinkage in highstrength concrete by internal curing using wet lightweight aggregates. *Cement and Concrete Research*. Vol. 31, No. 11, pp. 1587–1591.
- Bentz, D. P. and K. A. Snyder. 1999. Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate. *Cement and Concrete Research*, Vol. 29, No. 11, pp. 1863–1867.
- Bentz, D. P. and W. J. Weiss. 2011. Internal Curing: A 2010 State-of-the-Art Review. National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD.
- Cusson, D., Z. Lounis, and L. Daigle. 2010. Benefits of internal curing on service life and lifecycle cost of high-performance concrete bridge decks – A case study. *Cement and Concrete Composites*, Vol. 32, No. 5, pp. 339–350.
- Cusson, D. and J. Margeson. 2010. Chapter 97. Development of low-shrinkage highperformance concrete with improved durability. In *Concrete under Severe Conditions*. Two-volume set. Taylor & Fancis Group, London. pp. 869–878.
- Darman, R. 1992. Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs. OMB Circular No. A-94 Revised. Office of Management and Budget, Washington, DC.
- Jawad, D. and K. Ozbay. 2006. The discount rate in life cycle cost analysis of transportation projects. *Proceedings of the 85th Annual Meeting of the Transportation Research Board*, January 22–26, 2006, Washington, DC.
- Jeong, J.-H. and D. G. Zollinger. 2004. Early-Age Curling and Warping Behavior: Insights from a Fully Instrumented Test-Slab System. *Transportation Research Record: Journal of the Transportation Research Board*, No. 1896, pp. 66–74.
- Mehta, P. K. and P. J. M. Monteiro. 2013. *Concrete: Microstructure, Properties, and Materials,* McGraw-Hill Education.
- Rao, C. and M. Darter. 2013. *Evaluation of Internally Cured Concrete for Paving Applications*. Applied Research Associates, Champaign, IL.
- Schlitter, J., R. Henkensiefken, J. Castro, K. Raoufi, J. Weiss, and T. Nantung. 2010. Development of Internally Cured Concrete for Increased Service Life. Indiana Department of Transportation Division of Research and Purdue University Joint Transportation Research Program, West Lafayette, IN.

- Shah, S. P. and W. J. Weiss. 2000. High Performance Concrete: Strength, Permeability, and Shrinkage Cracking. *The Economical Solution for Durable Bridges and Transportation Structures: PCI/FHWA/FIB International Symposium on High Performance Concrete Proceedings*. September 25–27, 2000, Orlando, FL. pp. 331–339.
- Villarreal, V. H. 2008. Internal Curing Real World Ready Mix Production and Applications: A Practical Approach to Lightweight Modified Concrete. In *Internal Curing of High Performance Concrete: Lab and Field Experiences, ACI Special Publication 256.* American Concrete Institute, Farmington Hills, MI, pp. 45–56.
- Walls, J., III, and M, R. Smith. 1998. Life-Cycle Cost Analysis in Pavement Design: In Search of Better Decisions. Interim Technical Bulletin, FHWA-SA-98-079, Federal Highway Administration, Washington, DC.
- Wei, Y. and W. Hansen. 2008. Pre-Soaked Lightweight Fine Aggregates as Additives for Internal Curing in Concrete. In *Internal Curing of High Performance Concrete: Lab and Field Experiences, ACI Special Publication 256.* American Concrete Institute, Farmington Hills, MI, pp. 35–44.
- West, R., N. Tran, M. Musselman, J. Skolnik, and M. Brooks. 2013. A Review of the Alabama Department of Transportation's Policies and Procedures for Life-Cycle Cost Analysis for Pavement Type Selection. National Center for Asphalt Technology at Auburn University, Auburn, AL.
- Wilde, W. J., S. Waalkes, and R. Harrison. 1999. Life Cycle Cost Analysis of Portland Cement Concrete Pavements. Center for Transportation Research, University of Texas at Austin, Austin, TX.
- Zhutovsky, S. and K. Kovler. 2012. Effect of internal curing on durability-related properties of high performance concrete. *Cement and Concrete Research*, Vol. 42, No. 1, pp. 20–26.

APPENDIX: PAVEMENT DESIGN USING AASHTOWARE-PAVEMENT ME DESIGN V2.3.1+66

CC-8in-15ft-1.25in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-15ft-1.25in.dgpx

Design Inputs

Design Life: 30 years Design Type: JPCP

Existing construction:	-
Pavement construction:	June, 2019
Traffic opening:	July, 2019

Climate Data 42.398, -90.704 Sources (Lat/Lon)

Traffic

Design Structure

10.000						
Layer type	Material Type	Thickness (in)	Joint Design:			Heavy Trucks
PCC	JPCP Default	8.0	Joint spacing (ft)	15.0	Age (year)	(cumulative)
NonStabilized	Crushed gravel	10.0	Dowel diameter (in)	1.25	2019 (initial)	400
Subgrade	A-7-6	Semi-infinite	Slab width (ft)	12.0	2034 (15 years)	1,259,560
<u> </u>			L()		2049 (30 years)	2,987,560

Design Outputs

h :-----

Distress Prediction Summary						
Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	Saustieur	
Terminal IRI (in/mile)	172.00	158.48	90.00	95.15	Pass	
Mean joint faulting (in)	0.12	0.05	90.00	100.00	Pass	
JPCP transverse cracking (percent slabs)	15.00	1.92	90.00	100.00	Pass	

Distress Charts

Report generated on: 11/7/2017 5:52 PM

Version: Created

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

CC-8in-15ft-1.25in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-15ft-1.25in.dgpx

Design Properties

JPCP Design Properties

Structure - ICM Properties	
PCC surface shortwave absorptivity	0.85

PCC joint spacing (ft)	
Is joint spacing random ?	False
Joint spacing (ft)	15.00

Doweled Joints		Tied Shoulders	
Is joint doweled ?	True	Tied shoulders	True
Dowel diameter (in)	1.25	Load transfer efficiency (%)	40.00
Dowel spacing (in)	12.00		
Widened Slab		PCC-Base Contact Friction	
Is slab widened ?	False	PCC-Base full friction contact	True
Slab width (ft)	12.00	Months until friction loss	240.00
Sealant type Preform	med	Erodibility index	2
Permanent curl/warp	effective temp	perature difference (°F)	-10.00

Report generated on: 11/7/2017 5:52 PM Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 7 of 14

CC-8in-15ft-1.25in File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-15ft-1.25in.dgpx

Layer Information

Layer 1 PCC : JPCP Default

PCC			
Thickness (in)		8.0	
Unit weight (pcf)		144.0	
Poisson's ratio		0.2	
Thermal			
PCC coefficient of the 10^-6)	rmal expansion (in/in/⁰F x	4.8	
PCC thermal conduct	vity (BTU/hr-ft-ºF)	1.25	
PCC heat capacity (B	TU/lb-⁰F)	0.28	
Mix			
Cement type		Type I (1)	
Cementitious material	content (lb/yd^3)	550	
Water to cement ratio		0.43	
Aggregate type		Limestone (1)	
PCC zero-stress	Calculated Internally?	False	
temperature (⁰⊦)	User Value	101.9	
	Calculated Value	-	
Ultimate shrinkage	Calculated Internally?	False	
(microstrain)	User Value	611.0	
	Calculated Value		
Reversible shrinkage (%)		50	
Time to develop 50% of ultimate shrinkage (days)		35	
Curing method		Curing Compound	
PCC strength and	modulus (Input Level	: 3)	
28-Dav PCC comp	ressive strength (psi)	6050.0	
28-Day PCC elastic	4300000 0		

Identifiers				
Field	Value			
Display name/identifier	JPCP Default			
Description of object				
Author				
Date Created	5/9/2017 12:58:38 PM			
Approver				
Date approved	5/9/2017 12:58:38 PM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Report generated on: 11/7/2017 5:52 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 11 of 14

CC-8in-15ft-1.25in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-15ft-1.25in.dgpx

Layer 2 Non-stabilized Base : Crushed gravel

Unbound		
Layer thickness (in)	10.0	
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 38000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve				
Liquid Limit		6.0		
Plasticity Index		1.0		
Is layer compacted?		False		
		ls Def	User ined?	Value
Maximum dry unit weight (pcf)	False		127.2
Saturated hydraulic conductiv (ft/hr)	ity	False		5.054e-02
Specific gravity of solids		False		2.7
Water Content (%)		Fals	e	7.4
User-defined Soil Water ((SWCC)	Cha	arac	teristi	c Curve
Is User Defined?			False	
af			7.2555	
bf			1.3328	
cf			0.8242	
hr			117.40	00
Sieve Size	%	Pas	sing	
0.001mm				
0.002mm				
0.020mm				
#200 8.		7		
#100				
#80	12	2.9		
#60				
#50				
#40 20		20.0		
#30				
#20				
#16				
#10	33	33.8		
#8				
#4 44.		4.7		
/8-in. 57.2		1.2		
-2-in. 63.1		3.1		
0/4-111. 1 in	12	2.1		
11-in. 78		/0.0		
1 1/∠-IN. 85		00.0 01 6		
2-10.	9.	1.0		
2 1/2-111. 2 in	┢			
0-111. 2.170 in	0-	76		
5 1/2-in.	91	0.1		

Report generated on: 11/7/2017 5:52 PM

Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 12 of 14

CC-8in-15ft-1.25in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-15ft-1.25in.dgpx

Layer 3 Subgrade : A-7-6

Unbound			
Layer thickness (in)	Semi-infinite		
Poisson's ratio	0.35		
Coefficient of lateral earth pressure (k0)	0.5		

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 10000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value			
Display name/identifier	A-7-6			
Description of object	Default material			
Author	AASHTO			
Date Created	1/1/2011 12:00:00 AM			
Approver				
Date approved	1/1/2011 12:00:00 AM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Sieve				
Liquid Limit		51.0		
Plasticity Index		30.0		
Is layer compacted?		False		
		ls Def	User ined?	Value
Maximum dry unit weight (p	ocf)	False		97.7
Saturated hydraulic conduc (ft/hr)	tivity	False		8.946e-06
Specific gravity of solids		False		2.7
Water Content (%)		False		22.2
User-defined Soil Wate (SWCC)	r Ch	arac	teristi	c Curve
Is User Defined?			False	
af			136.41	79
bf			0.5183	
cf			0.0324	
hr			500.00	00
Sieve Size	%	Pas	ssing	
0.001mm				
0.002mm				
0.020mm				
#200	79	9.1		
#100				
#80	84	1.9		
#60				
#50				
#40	88	38.8		
#30				
#20				
#16	-8033	a 1931		
#10	93	3.0		
#8	_			
#4 94		94.9		
3/8-in. 96.		96.9 07 F		
1/2-in. 97.		97.5		
ວ/4-in. 1 :ຫ	98	0.J		
1-in. 96		98.8 00.2		
1 1/2-in. 9		99.3		
2-IN.	99	1.0		
2 1/2-IN. 2 in				
ວ-III. 2.1/0 in	~	0		
ວ 172-IN.	99	1.9		

Report generated on: 11/7/2017 5:52 PM Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 13 of 14

CC-8in-15ft-1.25in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-15ft-1.25in.dgpx

Calibration Coefficients

PUC Faulting	g		
$C_{12} = C_1 + C_2$	$(C_2 * FR^{0.25})$		
$C_{34} = C_3 +$	$+(C_4 * FR^{0.25})$		c.
FaultMax	$_{0} = C_{12} * \delta_{curling} * \left[lo \right]$	$g(1+C_5*5.0^{EROD})*\log_{m}$	$g\left(P_{200} * \frac{WetDays}{p_s}\right)\Big]^{c_s}$
FaultMax	$_{i} = FaultMax_{0} + C_{7} *$	$\sum_{j=1}^{m} DE_j * \log(1+C_5 * 5.$	0 ^{EROD}) ^C
$\Delta Fault_i =$	$C_{34} * (FaultMax_{i-1} -$	$-Fault_{i-1})^2 * DE_i$	
$C_8 = Down$	elDeterioration		
		3	
C1: 0.595	C2: 1.636	C3: 0.00217	C4: 0.00444
C1: 0.595 C5: 250	C2: 1.636 C6: 0.47	C3: 0.00217 C7: 7.3	C4: 0.00444 C8: 400
C1: 0.595 C5: 250 PCC Reliabi	C2: 1.636 C6: 0.47 lity Faulting Sta	C3: 0.00217 C7: 7.3 andard Deviation	C4: 0.00444 C8: 400

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	

PCC Cracking

I GO GIUCKIIIg	Eatique Coefficients			
$\log(N) = C1 \cdot (MR)^{C2}$		C2: 1 22	CA: 0.52	
σ	PCC Reliability C	racking Standard E	Deviation	002. 17
$CRK = \frac{100}{1 + C4 FD^{C5}}$	3.5522 * Pow(CRACK,0.3415) + 0.75			

Report generated on: 11/7/2017 5:52 PM

Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 14 of 14

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-20ft-1.25in.dgpx

Design Inputs

Design Life:	30 years	
Design Type:	JPCP	

Existing construction: Pavement construction: Traffic opening:

-June, 2019 July, 2019

Climate Data 42.398, -90.704 Sources (Lat/Lon)

Design Structure

Layer type	Material Type	Thickness (in)	Joint Design:
PCC	JPCP Default	8.0	Joint spacing (ft)
NonStabilized	Crushed gravel	10.0	Dowel diameter (in)
Subgrade	A-7-6	Semi-infinite	Slab width (ft)

	Traffic		
20.0	Age (year)	Heavy Trucks (cumulative)	
1.25	2019 (initial)	400	
 12.0	2034 (15 years)	1,259,560	
 	2049 (30 years)	2,987,560	

Design Outputs

Distress Prediction Summary						
Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	172.00	160.29	90.00	94.63	Pass	
Mean joint faulting (in)	0.12	0.06	90.00	99.99	Pass	
JPCP transverse cracking (percent slabs)	15.00	4.09	90.00	100.00	Pass	

Distress Charts

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

0.06

0.02

30

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-20ft-1.25in.dgpx

Design Properties

JPCP Design Properties

Structure - ICM Properties		
PCC surface shortwave absorptivity	0.85	

PCC joint spacing (ft)	
Is joint spacing random ?	False
Joint spacing (ft)	20.00

Doweled Joints		Tied Shoulders	
Is joint doweled ?	True	Tied shoulders	True
Dowel diameter (in)	1.25	Load transfer efficiency (%)	40.00
Dowel spacing (in)	12.00		
Widened Slab		PCC-Base Contact Friction	
Is slab widened ?	False	PCC-Base full friction contact	True
Slab width (ft)	12.00	Months until friction loss	240.00
Sealant type Prefor	med	Erodibility index	2
Permanent curl/warp	effective temp	perature difference (°F)	-10.00

Report generated on: 11/7/2017 5:53 PM Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 7 of 14

CC-8in-20ft-1.25in File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-20ft-1.25in.dgpx

Layer Information

Layer 1 PCC : JPCP Default

PCC		
Thickness (in)		8.0
Unit weight (pcf)		144.0
Poisson's ratio		0.2
Thermal		
PCC coefficient of the 10^-6)	rmal expansion (in/in/ºF x	4.8
PCC thermal conducti	vity (BTU/hr-ft-ºF)	1.25
PCC heat capacity (B	TU/lb-⁰F)	0.28
Mix		
Cement type		Type I (1)
Cementitious material	content (lb/yd^3)	550
Water to cement ratio		0.43
Aggregate type		Limestone (1)
PCC zero-stress	Calculated Internally?	False
temperature (°⊦)	User Value	101.9
	Calculated Value	-
Ultimate shrinkage	Calculated Internally?	False
(microstrain)	User Value	611.0
	Calculated Value	
Reversible shrinkage	(%)	50
Time to develop 50% (days)	of ultimate shrinkage	35
Curing method		Curing Compound
PCC strength and	modulus (Input Level	: 3)
28-Day PCC comp	ressive strength (psi)	6050.0
28-Day PCC elastic	modulus (nsi)	4300000 0

Identifiers		
Field	Value	
Display name/identifier	JPCP Default	
Description of object		
Author		
Date Created	5/9/2017 12:58:38 PM	
Approver		
Date approved	5/9/2017 12:58:38 PM	
State		
District		
County		
Highway		
Direction of Travel		
From station (miles)		
To station (miles)		
Province		
User defined field 1		
User defined field 2		
User defined field 3		
Revision Number	0	

Report generated on: 11/7/2017 5:53 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 11 of 14

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-20ft-1.25in.dgpx

Layer 2 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	10.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 38000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve				
Liquid Limit			6.0	
Plasticity Index		1.0		
Is layer compacted?		False		
		Is User Defined?		Value
Maximum dry unit weight (pcf)	Fals	е	127.2
Saturated hydraulic conductiv (ft/hr)	ity	Fals	e	5.054e-02
Specific gravity of solids		Fals	е	2.7
Water Content (%)		Fals	e	7.4
User-defined Soil Water ((SWCC)	Cha	arac	teristi	c Curve
Is User Defined?			False	
af			7.2555	
bf			1.3328	
cf			0.8242	
hr			117.40	00
Sieve Size	%	Pas	sing	
0.001mm				
0.002mm				
0.020mm				
.00 8.		7		
#100				
#80	12.9		9	
#60				
#50				
#40	20	0.0		
#30				
#20				
#16				
#10	33	8.8		
#8				
#4	44.7			
3/8-in.	57.2			
1/2-in.	63	3.1		
3/4-in.	72	2.7		
1-in.	. 78		78.8	
1 1/2-in.	1/2-in. 85		5.8	
2-in.	n. 91		1.6	
2 1/2-in.				
3-in.				
3 1/2-in.	97	7.6		

Report generated on: 11/7/2017 5:53 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 12 of 14

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-20ft-1.25in.dgpx

Layer 3 Subgrade : A-7-6

Unbound		
Layer thickness (in)	Semi-infinite	
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 10000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value		
Display name/identifier	A-7-6		
Description of object	Default material		
Author	AASHTO		
Date Created	1/1/2011 12:00:00 AM		
Approver			
Date approved	1/1/2011 12:00:00 AM		
State			
District			
County			
Highway			
Direction of Travel			
From station (miles)			
To station (miles)			
Province			
User defined field 1			
User defined field 2			
User defined field 3			
Revision Number	0		

Sieve				
Liquid Limit			51.0	
Plasticity Index		30.0		
Is layer compacted?		False		
		ls Def	User ined?	Value
Maximum dry unit weight (p	ocf)	Fals	e	97.7
Saturated hydraulic conduc (ft/hr)	tivity	Fals	e	8.946e-06
Specific gravity of solids		Fals	e	2.7
Water Content (%)		Fals	e	22.2
User-defined Soil Wate (SWCC)	r Ch	arac	teristi	c Curve
Is User Defined?			False	
af			136.41	79
bf			0.5183	
cf			0.0324	
hr			500.00	00
Sieve Size	%	Pas	ssing	
0.001mm				
0.002mm				
0.020mm				
#200 7:		9.1		
#100				
¥80 84		1.9		
#60				
#50				
#40	88	38.8		
#30				
#20				
#16	-5033	a 1001		
#10	93	3.0		
#8	_			
#4 94.9		14.9		
3/8-in.	96	5.9		
1/2-in.	9,	⁷ .5		
ວ/4-in. 1 :ຫ	98	0.J		
1-in. 9		98.8		
1 1/2-in. 99		୬୫.୦ ୦୦.୦		
2-in. 9		1.0		
2 1/2-IN. 2 in				
ວ-III. 2.1/0 in	~	0		
ວ 172-IN.	99	1.9		

Report generated on: 11/7/2017 5:53 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 13 of 14

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-8in-20ft-1.25in.dgpx

Calibration Coefficients

PCC Faulting	1			
$C_{12} = C_1 + $	$(C_2 * FR^{0.25})$			
$C_{34} = C_3 +$	$(C_4 * FR^{0.25})$		C	
FaultMax	$_{0}=C_{12}*\delta_{curling}*\left[lo\right]$	$g(1 + C_5 * 5.0^{EROD}) * \log_{10}$	$g\left(P_{200}*\frac{WetDays}{p_S}\right)\right]^{c_s}$	
FaultMax	$= FaultMax_0 + C_7 *$	$\sum_{j=1}^{m} DE_{j} * \log(1 + C_{5} * 5).$	$0^{EROD})^{C_6}$	
$\Delta Fault_i =$	$C_{34} * (FaultMax_{i-1} -$	$Fault_{i-1})^2 * DE_i$		
$C_8 = Dowe$	lDeterioration			
C1: 0.595	C2: 1.636	C3: 0.00217	C4: 0.00444	
C5: 250	C6: 0.47	C7: 7.3	C8: 400	
PCC Reliabi	ity Faulting Sta	andard Deviation		
0.07162 * Pow(FAULT,0.368) + 0.00806				

IRI-jpcp			
C1 - Cracking	C1: 0.8203	C2: 0.4417	
C2 - Spalling	C3: 1.4929	C4: 25.24	
C3 - Faulting	Reliability Stan	Reliability Standard Deviation	
C4 - Site Factor	5.4		

PCC Cracking

I GO GIUCKIIIg	Estigue Coefficiente Creeking Coefficien			onte
$\log(N) = C1 \cdot (MR)^{C2}$			C4: 0.52	
σ	PCC Reliability C	racking Standard E	Deviation	002. 17
$CRK = \frac{100}{1 + C4 FD^{C5}}$	3.5522 * Pow(CF	ACK,0.3415) + 0.	75	

Report generated on: 11/7/2017 5:53 PM

Version: 2.3.1+66

Approved^{by:} on: 5/9/2017 12:58 PM

Page 14 of 14

CC-10in-15ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-15ft-1.5in.dgpx

Design Inputs

Design Life:	30 years	
Design Type:	JPCP	

Existing construction: Pavement construction: Traffic opening:

-June, 2019 July, 2019

Climate Data 42.398, -90.704 Sources (Lat/Lon)

Design Structure

Layer type	Material Type	Thickness (in)	Joint Design:
PCC	JPCP Default	10.0	Joint spacing (ft)
NonStabilized	Crushed gravel	10.0	Dowel diameter (in)
Subgrade	A-7-6	Semi-infinite	Slab width (ft)

	Traffic		
15.0	Age (year)	Heavy Trucks (cumulative)	
 1.50	2019 (initial)	1,500	
 12.0	2034 (15 years)	4,723,370	
 	2049 (30 years)	11,203,400	

Design Outputs

Distress Prediction Summary					
Distress Type	Distress (Relia	Specified ability	Reliab	Criterion	
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	172.00	167.59	90.00	91.89	Pass
Mean joint faulting (in)	0.12	0.06	90.00	99.97	Pass
JPCP transverse cracking (percent slabs)	15.00	0.96	90.00	100.00	Pass

Distress Charts

Report generated on: 11/7/2017 5:52 PM

Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

CC-10in-15ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-15ft-1.5in.dgpx

Design Properties

JPCP Design Properties

Structure - ICM Properties		
PCC surface shortwave absorptivity	0.85	

PCC joint spacing (ft)		
Is joint spacing random ?	False	
Joint spacing (ft)	15.00	

Doweled Joints		Tied Shoulders	
Is joint doweled ?	True	Tied shoulders	True
Dowel diameter (in)	1.50	Load transfer efficiency (%)	40.00
Dowel spacing (in)	12.00		
Widened Slab		PCC-Base Contact Friction	
Is slab widened ?	False	PCC-Base full friction contact	True
Slab width (ft)	12.00	Months until friction loss	240.00
Sealant type Preform	med	Erodibility index	2
Permanent curl/warp	effective temp	perature difference (°F)	-10.00

Report generated on: 11/7/2017 5:52 PM Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 7 of 14

CC-10in-15ft-1.5in File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-15ft-1.5in.dgpx

Layer Information

Layer 1 PCC : JPCP Default

PCC			
Thickness (in)		10.0	
Unit weight (pcf)		144.0	
Poisson's ratio		0.2	
Thermal			
PCC coefficient of the 10^-6)	rmal expansion (in/in/ºF x	4.8	
PCC thermal conducti	vity (BTU/hr-ft-°F)	1.25	
PCC heat capacity (B	ſU/lb-⁰F)	0.28	
Mix			
Cement type		Type I (1)	
Cementitious material	content (lb/yd^3)	550	
Water to cement ratio		0.43	
Aggregate type		Limestone (1)	
PCC zero-stress	Calculated Internally?	False	
temperature (°⊢)	User Value	101.9	
	Calculated Value		
Ultimate shrinkage	Calculated Internally?	False	
(microstrain)	User Value	611.0	
	Calculated Value	-	
Reversible shrinkage (%)		50	
Time to develop 50% ((days)	of ultimate shrinkage	35	
Curing method		Curing Compound	
PCC strength and	modulus (Input Level	: 3)	
28-Day PCC comp	ressive strength (psi)	6050.0	
28-Day PCC elastic	modulus (psi)	4300000.0	

Identifiers		
Field	Value	
Display name/identifier	JPCP Default	
Description of object		
Author		
Date Created	5/9/2017 12:58:38 PM	
Approver		
Date approved	5/9/2017 12:58:38 PM	
State		
District		
County		
Highway		
Direction of Travel		
From station (miles)		
To station (miles)		
Province		
User defined field 1		
User defined field 2		
User defined field 3		
Revision Number	0	

Report generated on: 11/7/2017 5:52 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 11 of 14

CC-10in-15ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-15ft-1.5in.dgpx

Layer 2 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	10.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 38000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve					
Liquid Limit			6.0		
Plasticity Index			1.0		
Is layer compacted?			False		
		ls ()efi	User ined?	Value	
Maximum dry unit weight (pcf)	Fa	False		127.2	
Saturated hydraulic conductivi (ft/hr)	^{ty} Fa	False		5.054e-02	
Specific gravity of solids	Fa	False		2.7	
Water Content (%)	Fa	False		7.4	
User-defined Soil Water C (SWCC)	har	act	teristi	c Curve	
Is User Defined?			False		
af			7.2555		
bf			1.3328		
cf			0.8242		
hr			117.40	00	
Sieve Size	% F	Pas	sing		
0.001mm					
0.002mm					
0.020mm					
#200	8.7				
#100					
#80	12.9)			
#60					
#50					
#40	20.0)			
#30					
#20					
#16					
#10	33.8	3			
#8					
#4	44.7	7			
3/8-in.	57.2	2			
1/2-in.	63.1				
3/4-in.	72.7	7			
1-in.	78.8	3			
1 1/2-in.	85.8	3			
2-in.	91.6	6			
2 1/2-in.					
3-in.					
3 1/2-in.	97.6	6			

Report generated on: 11/7/2017 5:52 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 12 of 14

CC-10in-15ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-15ft-1.5in.dgpx

Layer 3 Subgrade : A-7-6

Unbound		
Layer thickness (in) Semi-infinite		
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 10000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	A-7-6
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve				
Liquid Limit			51.0	
Plasticity Index			30.0	
Is layer compacted?			False	
		ls Def	User ined?	Value
Maximum dry unit weight (j	pcf)	Fals	e	97.7
Saturated hydraulic conduc (ft/hr)	ctivity	Fals	e	8.946e-06
Specific gravity of solids		Fals	e	2.7
Water Content (%)		Fals	e	22.2
User-defined Soil Wate (SWCC)	er Ch	arac	teristi	c Curve
Is User Defined?			False	
af			136.41	79
bf			0.5183	
cf			0.0324	
hr			500.00	00
Sieve Size	%	Pas	sing	
0.001mm				
0.002mm				
0.020mm				
#200	79	9.1		
#100				
#80	84	1.9		
#60				
#50				
#40	88	88.8		
#30				
#20				
#16				
#10	93	3.0		
#8				
#4	94	1.9		
3/8-in.	96	5.9		
1/2-in.	97	7.5		
3/4-in.	98	3.3		
1-in.	98	3.8		
1 1/2-in.	99	9.3		
2-in.	99	9.6		
2 1/2-in.				
3-in.				
3 1/2-in.	99	9.9		

Report generated on: 11/7/2017 5:52 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 13 of 14

CC-10in-15ft-1.5in File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-15ft-1.5in.dgpx

Calibration Coefficients

PCC Faulting	3		
$C_{12} = C_1 + C_{34} = C_3 + C_3$	$(C_2 * FR^{0.25})$ - $(C_4 * FR^{0.25})$		
FaultMax	$_{0}=C_{12}*\delta_{curling}*\left[lo$	$\log(1+C_5*5.0^{EROD})*\log(1+C_5)$	$\left(P_{200} * \frac{WetDays}{p_S}\right) \right]^{C_6}$
FaultMax Δ Fault _i = $C_8 = Dowe$	$i = FaultMax_0 + C_7 *$ $C_{34} * (FaultMax_{i-1} - C_{34} * (FaultMax_{i-1} - C_{34} + C_{34} * C_{34} + C_{34} * C_$	$\sum_{j=1}^{m} DE_j * \log(1 + C_5 * 5)$ $-Fault_{i-1})^2 * DE_i$	0 ^{EROD}) ^{C6}
C1: 0.595	C2: 1.636	C3: 0.00217	C4: 0.00444
C5: 250	C6: 0.47	C7: 7.3	C8: 400
PCC Reliabi	lity Faulting Sta	andard Deviation	
0.07162 * Pc	w(FAULT.0.368) + 0.00806	

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	

PCC Cracking

Eatique Coefficients Cracking Coefficients				onte
$\log(N) = C1 \cdot (MR)^{C2}$			C4: 0.52	
σ	PCC Reliability C	racking Standard E	Deviation	002. 17
$CRK = \frac{100}{1 + C4 FD^{C5}}$	3.5522 * Pow(CF	ACK,0.3415) + 0.	75	

Report generated on: 11/7/2017 5:52 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 14 of 14

CC-10in-20ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-20ft-1.5in.dgpx

Design Inputs

Design Life:	30 years
Design Type:	JPCP

Existing construction: Pavement construction: Traffic opening:

-June, 2019 July, 2019

Climate Data 42.398, -90.704 Sources (Lat/Lon)

Design Structure

Layer type	Material Type	Thickness (in)	Joint Design:
PCC	JPCP Default	10.0	Joint spacing (ft)
NonStabilized	Crushed gravel	10.0	Dowel diameter (in)
Subgrade	A-7-6	Semi-infinite	Slab width (ft)

		Traffic	
T	20.0	Age (year)	Heavy Trucks (cumulative)
t	1.50	2019 (initial)	1,500
t	12.0	2034 (15 years)	4,723,370
		2049 (30 years)	11,203,400

Design Outputs

Distress Prediction Summary					
Distress Type	Distress (Relia	Specified ability	Reliab	ility (%)	Criterion
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	172.00	174.51	90.00	88.81	Fail
Mean joint faulting (in)	0.12	0.09	90.00	98.49	Pass
JPCP transverse cracking (percent slabs)	15.00	4.28	90.00	100.00	Pass

Distress Charts

Report generated on: 11/7/2017 5:53 PM

Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 1 of 14

CC-10in-20ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-20ft-1.5in.dgpx

Design Properties

JPCP Design Properties

Structure - ICM Properties	
PCC surface shortwave absorptivity	0.85

PCC joint spacing (ft)	
Is joint spacing random ?	False
Joint spacing (ft)	20.00

Doweled Joints		Tied Shoulders	
Is joint doweled ?	True	Tied shoulders	True
Dowel diameter (in)	1.50	Load transfer efficiency (%)	40.00
Dowel spacing (in)	12.00		
Widened Slab		PCC-Base Contact Friction	
Is slab widened ?	False	PCC-Base full friction contact	
Slab width (ft)	12.00	Months until friction loss	240.00
Sealant type Preform	med	Erodibility index	2
Permanent curl/warp	effective temp	perature difference (°F)	-10.00

Report generated on: 11/7/2017 5:53 PM Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 7 of 14

CC-10in-20ft-1.5in File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-20ft-1.5in.dgpx

Layer Information

Layer 1 PCC : JPCP Default

PCC			
Thickness (in)		10.0	
Unit weight (pcf)		144.0	
Poisson's ratio		0.2	
Thermal			
PCC coefficient of the 10^-6)	rmal expansion (in/in/ºF x	4.8	
PCC thermal conducti	vity (BTU/hr-ft-°F)	1.25	
PCC heat capacity (B	ſU/lb-⁰F)	0.28	
Mix			
Cement type		Type I (1)	
Cementitious material	content (lb/yd^3)	550	
Water to cement ratio		0.43	
Aggregate type		Limestone (1)	
PCC zero-stress	Calculated Internally?	False	
temperature (°⊢)	User Value	101.9	
	Calculated Value		
Ultimate shrinkage	Calculated Internally?	False	
(microstrain)	User Value	611.0	
	Calculated Value	-	
Reversible shrinkage (%)		50	
Time to develop 50% of ultimate shrinkage (days)		35	
Curing method		Curing Compound	
PCC strength and	modulus (Input Level	: 3)	
28-Day PCC comp	ressive strength (psi)	6050.0	
28-Day PCC elastic	28-Day PCC elastic modulus (nsi)		

Identifiers				
Field	Value			
Display name/identifier	JPCP Default			
Description of object				
Author				
Date Created	5/9/2017 12:58:38 PM			
Approver				
Date approved	5/9/2017 12:58:38 PM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Report generated on: 11/7/2017 5:53 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 11 of 14

CC-10in-20ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-20ft-1.5in.dgpx

Layer 2 Non-stabilized Base : Crushed gravel

Unbound		
Layer thickness (in)	10.0	
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 38000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value			
Display name/identifier	Crushed gravel			
Description of object	Default material			
Author	AASHTO			
Date Created	1/1/2011 12:00:00 AM			
Approver				
Date approved	1/1/2011 12:00:00 AM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Sieve				
Liquid Limit		6.0		
Plasticity Index		1.0		
Is layer compacted?		False		
	D	s ef	User ined?	Value
Maximum dry unit weight (pcf)	Fa	False		127.2
Saturated hydraulic conductivi (ft/hr)	^{ty} Fa	False		5.054e-02
Specific gravity of solids	Fa	False		2.7
Water Content (%)	Fa	False		7.4
User-defined Soil Water C (SWCC)	hara	ac	teristi	c Curve
Is User Defined?			False	
af			7.2555	
bf			1.3328	
cf			0.8242	
hr			117.40	00
Sieve Size	% P	as	sing	
0.001mm				
0.002mm				
0.020mm				
#200	8.7			
#100				
#80	12.9			
#60	_			
#50	20.23 A			
#40	20.0	20.0		
#30	_			
#20	_			
#16	00.0	_		
#10	<i>აა.</i> o			
#0 #4	117			
#4 44		44.7 57 0		
3/ö-in. 57		D/.∠		
1/2-in. 03 3/4 in 70		00.1 		
0/4-III. //		78.8		
1 1/2-in		85.8		
2-in 0		91.6		
∠-⊪. 2.1/2-in				
3-in	-			
3 1/2-in.	97.6	97.6		
- 10 HAL	20			

Report generated on: 11/7/2017 5:53 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 12 of 14

CC-10in-20ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-20ft-1.5in.dgpx

Layer 3 Subgrade : A-7-6

Unbound			
Layer thickness (in)	Semi-infinite		
Poisson's ratio	0.35		
Coefficient of lateral earth pressure (k0)	0.5		

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 10000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	A-7-6
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve				
Liquid Limit		51.0		
Plasticity Index		30.0		
Is layer compacted?		False		
		ls Def	User ined?	Value
Maximum dry unit weight (p	cf)	False		97.7
Saturated hydraulic conduct (ft/hr)	tivity	False		8.946e-06
Specific gravity of solids		False		2.7
Water Content (%)		False		22.2
User-defined Soil Water (SWCC)	Ch	arac	teristi	c Curve
Is User Defined?			False	
af			136.41	79
bf			0.5183	
cf			0.0324	
hr			500.00	00
Sieve Size	%	Pas	ssing	
0.001mm				
0.002mm				
0.020mm				
#200	79	9.1		
#100				
#80	84	1.9		
#60				
#50				
#40	88	38.8		
#30				
#20				
#16	4000	a 1001		
#10	93	3.0		
#8	_			
#4 94		94.9		
3/8-in. 96		96.9		
1/2-in. 97		97.5		
3/4-m.	98	0.J		
1-in. 98		98.8		
1 1/2-in. 9		99.3 00.6		
2-111.	95	0.0		
2 172-111. 3 in	+			
3-11. 3.1/2 in	0	0		
ə 172-in.	98	9.9		

Report generated on: 11/7/2017 5:53 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 13 of 14

CC-10in-20ft-1.5in File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\Control concrete\CC-10in-20ft-1.5in.dgpx

Calibration Coefficients

	9		
$C_{12} = C_1 +$	$-(C_2 * FR^{0.25})$		
$C_{34} = C_3 +$	$+(C_4 * FR^{0.25})$		
FaultMax	$_{0} = C_{12} * \delta_{curling} * \left[lo \right]$	$g(1+C_5*5.0^{EROD})*\log$	$g\left(P_{200} * \frac{WetDays}{p_{S}}\right) \Big]^{C_{6}}$
FaultMax	$_i = FaultMax_0 + C_7 *$	$\sum_{j=1}^{m} DE_j * \log(1 + C_5 * 5)$	$0^{EROD})^{c_6}$
		J=1	
AFmilt. =	C * (EmultMax	- Foult.) ² * DF.	
$\Delta Fault_i = C_8 = Down$	C ₃₄ * (FaultMax _{i-1} – elDeterioration	$-Fault_{i-1})^2 * DE_i$	
$\Delta Fault_i = C_8 = Down$ C1: 0.595	C ₃₄ * (FaultMax _{i-1} - elDeterioration C2: 1.636	$-Fault_{i-1})^2 * DE_i$ C3: 0.00217	C4: 0.00444
$\Delta Fault_i = C_8 = Down$ C1: 0.595 C5: 250	C ₃₄ * (FaultMax _{i-1} - elDeterioration C2: 1.636 C6: 0.47	C3: 0.00217	C4: 0.00444 C8: 400
$\Delta Fault_i = C_8 = Down$ C1: 0.595 C5: 250 PCC Reliabi	C ₃₄ * (FaultMax _{i-1} – elDeterioration C2: 1.636 C6: 0.47 lity Faulting Sta	C3: 0.00217 C7: 7.3	C4: 0.00444 C8: 400

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	

PCC Cracking

I GO GIUCKIIIg	Eatique Coefficier	nte	Cracking Coefficients	
$\log(N) = C1 \cdot (MR)^{C2}$				
σ	PCC Reliability C	racking Standard E	Deviation	002. 17
$CRK = \frac{100}{1 + C4 FD^{C5}}$	3.5522 * Pow(CRACK,0.3415) + 0.75			

Report generated on: 11/7/2017 5:53 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 14 of 14

ICC-7in-15ft-1in

0.01 0.03

30

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-15ft-1in.dgpx

Design Inputs

Design Life:	30 years
Design Type:	JPCP

Existing construction:
Pavement construction
Traffic opening:

n: June, 2019 July, 2019

Climate Data 42.398, -90.704 Sources (Lat/Lon)

Design Structure

Layer type	Material Type	Thickness (in)	Joint Design:
PCC	JPCP Default	7.0	Joint spacing (ft)
NonStabilized	Crushed gravel	10.0	Dowel diameter (in)
Subgrade	A-7-6	Semi-infinite	Slab width (ft)

		Traffic			
I	15.0	Age (year)	Heavy Trucks (cumulative)		
ł	1.00	2019 (initial)	400		
12.0		2034 (15 years)	1,259,560		
		2049 (30 years)	2,987,560		

20

25

Design Outputs

Distress Prediction Summary						
Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	172.00	171.03	90.00	90.43	Pass	
Mean joint faulting (in)	0.12	0.07	90.00	99.91	Pass	
JPCP transverse cracking (percent slabs)	15.00	3.29	90.00	100.00	Pass	

Distress Charts

Report generated on: 11/7/2017 5:54 PM Version: Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM Page 1 of 14 2.3.1+66

ICC-7in-15ft-1in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-15ft-1in.dgpx

Design Properties

JPCP Design Properties

Structure - ICM Properties		
PCC surface shortwave absorptivity	0.85	

PCC joint spacing (ft)		
Is joint spacing random ? False		
Joint spacing (ft)	15.00	

Doweled Joints		Tied Shoulders	
Is joint doweled ?	True	Tied shoulders Tru	
Dowel diameter (in)	1.00	Load transfer efficiency (%)	40.00
Dowel spacing (in)	12.00		
Widened Slab		PCC-Base Contact Friction	
Is slab widened ?	False	PCC-Base full friction contact True	
Slab width (ft)	12.00	Months until friction loss	
Sealant type Preform	med	Erodibility index	2
Permanent curl/warp	effective tem	perature difference (°F)	-10.00

Report generated on: 11/7/2017 5:54 PM Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 7 of 14

ICC-7in-15ft-1in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-15ft-1in.dgpx

Layer Information

Layer 1 PCC : JPCP Default

PCC		
Thickness (in)	7.0	
Unit weight (pcf)		138.5
Poisson's ratio		0.2
Thermal		
PCC coefficient of the 10^-6)	rmal expansion (in/in/⁰F x	4.3
PCC thermal conduct	vity (BTU/hr-ft-ºF)	1.25
PCC heat capacity (B	TU/lb-⁰F)	0.28
Mix		
Cement type	Type I (1)	
Cementitious material	content (lb/yd^3)	550
Water to cement ratio		0.43
Aggregate type		Limestone (1)
PCC zero-stress	Calculated Internally?	False
temperature (°F)	User Value	101.9
	Calculated Value	-
Ultimate shrinkage	Calculated Internally?	False
(microstrain)	User Value	592.0
	Calculated Value	-
Reversible shrinkage	(%)	50
Time to develop 50% (days)	35	
Curing method	Wet Curing	
PCC strength and	modulus (Input Level	: 3)
28-Day PCC comp	ressive strength (psi)	6070.0
28-Day PCC elastic	c modulus (psi)	3950000.0

Identifiers				
Field	Value			
Display name/identifier	JPCP Default			
Description of object				
Author				
Date Created	5/9/2017 12:58:38 PM			
Approver				
Date approved	5/9/2017 12:58:38 PM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Report generated on: 11/7/2017 5:54 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 11 of 14

ICC-7in-15ft-1in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-15ft-1in.dgpx

Layer 2 Non-stabilized Base : Crushed gravel

Unbound		
Layer thickness (in)	10.0	
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)	

Resilient Modulus (psi) 38000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Liquid Limit 6.0 Plasticity Index 1.0 Is layer compacted? False Is User Defined? Val Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity (ft/hr) False 5.054e-0 Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) Is User Defined? False	ue)2
Plasticity Index 1.0 Is layer compacted? False Is User Defined? Val Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity (ft/hr) False 5.054e-C Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False	ue)2
Is layer compacted? False Is User Val Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity (ft/hr) False 5.054e-C Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False False	ue)2
Is User Defined? Val Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity (ft/hr) False 5.054e-C Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (sWCC) False	ue)2
Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity False 5.054e-0 Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False Is User Defined? False)2
Saturated hydraulic conductivity (ft/hr) False 5.054e-C Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False	02
Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False	
Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) Is User Defined? False	
User-defined Soil Water Characteristic Curve (SWCC) Is User Defined?	
Is User Defined? False	
And the second second in the second sec	
af 7.2555	
bf 1.3328	
cf 0.8242	
hr 117.4000	
Sieve Size % Passing	
0.001mm	
0.002mm	
0.020mm	
#200 8.7	
#100	
#80 12.9	
#60	
#50	
#40 20.0	
#30	
#20	
#16	
#10 33.8	
#8	
#4 44.7	
3/8-in. 57.2	
1/2-in. 63.1	
3/4-in. 72.7	
1-in. 78.8	
1 1/2-in. 85.8	
2-in. 91.6	
2 1/2-in.	
3-in.	
3 1/2-in. 97.6	

Report generated on: 11/7/2017 5:54 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 12 of 14

ICC-7in-15ft-1in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-15ft-1in.dgpx

Layer 3 Subgrade : A-7-6

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)	

Resilient Modulus (psi) 10000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	A-7-6
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve				
Liquid Limit			51.0	
Plasticity Index			30.0	
Is layer compacted? False				
		ls Def	User ined?	Value
Maximum dry unit weight (pcf)		False		97.7
Saturated hydraulic conductivity (ft/hr)		False		8.946e-06
Specific gravity of solids	5	False		2.7
Water Content (%)		Fals	e	22.2
User-defined Soil Wa (SWCC)	ater Ch	arac	teristi	c Curve
Is User Defined?			False	
af			136.41	79
bf			0.5183	
cf			0.0324	
hr			500.00	00
Sieve Size	%	Pas	ssing	
0.001mm				
0.002mm				
0.020mm				
#200	79	9.1		
#100				
#80	84	4.9		
#60				
#50				
#40	88	3.8		
#30				
#20				
#16		ex 523		
#10	93	3.0		
#8		6 223		
#4	94	4.9		
3/8-in.	96	5.9		
1/2-in.	9	/.5		
3/4-in.	98	3.3		
1-in.	98	3.8		
1 1/2-in.	99	9.3		
2-in.	99	9.6		
2 1/2-in.				
3-in.	1210			
3 1/2-in.	99	9.9		

Report generated on: 11/7/2017 5:54 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 13 of 14

ICC-7in-15ft-1in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-15ft-1in.dgpx

Calibration Coefficients

PCC Faultin	g		
$C_{12} = C_1 +$	$+(C_2 * FR^{0.25})$		
$C_{34} = C_3 -$	$+ (C_4 * FR^{0.25})$		
FaultMax	$c_0 = C_{12} * \delta_{curling} * \left[local density \right]$	$g(1+C_5*5.0^{EROD})*\log$	$g\left(P_{200}*\frac{WetDays}{p_S}\right)\right]^{c_6}$
FaultMax	$c_i = FaultMax_0 + C_7 *$	$\sum_{j=1}^{m} DE_j * \log(1 + C_5 * 5)$	0 ^{EROD}) ^C ⁶
$\Delta Fault_i =$	$C_{34} * (FaultMax_{i-1} -$	$Fault_{i-1}$ * DE_i	
$C_8 = Dow$	elDeterioration		
C1: 0.595	C2: 1.636	C3: 0.00217	C4: 0.00444
	C6:0.47	07.70	00.400
C5: 250	00.0.47	07:7.3	08.400
C5: 250 PCC Reliabi	ility Faulting Sta	andard Deviation	08.400

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	

PCC Cracking

I OO Oldeking				
MD	Fatigue Coefficients		Cracking Coeffic	ients
$\log(N) = C1 \cdot (\frac{MLN}{m})^{C2}$	C1:2	C2: 1.22	C4: 0.52	C5: -2.17
σ	PCC Reliability C	racking Standard [Deviation	
CPV = 100	3.5522 * Pow(CF	RACK,0.3415) + 0	.75	
$\frac{CIGK}{1+C4} = \frac{1+C4}{1+C4} \frac{FD^{C5}}{FD^{C5}}$				

Report generated on: 11/7/2017 5:54 PM

Version: 2.3.1+66

Approved^{by:} on: 5/9/2017 12:58 PM

Page 14 of 14

0.08

30

..... 0.04

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-20ft-1in.dgpx

Design Inputs

Design Life:	30 years
Design Type:	JPCP

Existing construction:
Pavement constructio
Traffic opening:

n: June, 2019 July, 2019

Climate Data 42.398, -90.704 Sources (Lat/Lon)

Design Structure

Layer type	Material Type	Thickness (in)	Joint Design:
PCC	JPCP Default	7.0	Joint spacing (ft)
NonStabilized	Crushed gravel	10.0	Dowel diameter (in)
Subgrade	A-7-6	Semi-infinite	Slab width (ft)

	Traffic	
20.0	Age (year)	Heavy Trucks (cumulative)
1.00	2019 (initial)	400
12.0	2034 (15 years)	1,259,560
	2049 (30 years)	2,987,560

20

25

Design Outputs

Distress Prediction Summary					
Distress Type	Distress (Relia	Specified ability	Reliab	ility (%)	Criterion
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	172.00	169.99	90.00	90.90	Pass
Mean joint faulting (in)	0.12	0.08	90.00	99.48	Pass
JPCP transverse cracking (percent slabs)	15.00	4.57	90.00	100.00	Pass

Distress Charts

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-20ft-1in.dgpx

Design Properties

JPCP Design Properties

Structure - ICM Properties	
PCC surface shortwave absorptivity	0.85

PCC joint spacing (ft)	
Is joint spacing random ?	False
Joint spacing (ft)	20.00

Doweled Joints		Tied Shoulders	
Is joint doweled ?	True	Tied shoulders	True
Dowel diameter (in)	1.00	Load transfer efficiency (%)	40.00
Dowel spacing (in)	12.00		-
Widened Slab		PCC-Base Contact Friction	
Is slab widened ?	False	PCC-Base full friction contact	True
Slab width (ft)	12.00	Months until friction loss	240.00
Sealant type Prefor	med	Erodibility index	2
Permanent curl/warp	effective temp	perature difference (°F)	-10.00

Report generated on: 11/7/2017 5:54 PM Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 7 of 14

ICC-7in-20ft-1in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-20ft-1in.dgpx

Layer Information

Layer 1 PCC : JPCP Default

PCC		
Thickness (in)		7.0
Unit weight (pcf)	138.5	
Poisson's ratio		0.2
Thermal		
PCC coefficient of the 10^-6)	rmal expansion (in/in/⁰F x	4.3
PCC thermal conduct	vity (BTU/hr-ft-ºF)	1.25
PCC heat capacity (B	TU/lb-⁰F)	0.28
Mix		
Cement type		Type I (1)
Cementitious material	content (lb/yd^3)	550
Water to cement ratio		0.43
Aggregate type		Limestone (1)
PCC zero-stress	Calculated Internally?	False
temperature (ºF)	User Value	101.9
	Calculated Value	-
Ultimate shrinkage	Calculated Internally?	False
(microstrain)	User Value	592.0
	Calculated Value	-
Reversible shrinkage	(%)	50
Time to develop 50% (days)	of ultimate shrinkage	35
Curing method		Wet Curing
PCC strength and	modulus (Input Level	: 3)
28-Day PCC comp	ressive strength (psi)	6070.0
28-Day PCC elastic	c modulus (psi)	3950000.0

Identifiers	
Field	Value
Display name/identifier	JPCP Default
Description of object	
Author	
Date Created	5/9/2017 12:58:38 PM
Approver	
Date approved	5/9/2017 12:58:38 PM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 11/7/2017 5:54 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 11 of 14

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-20ft-1in.dgpx

Layer 2 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	10.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 38000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Liquid Limit 6.0 Plasticity Index 1.0 Is layer compacted? False Is User Defined? Val Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity (ft/hr) False 5.054e-0 Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) Is User Defined? False	ue)2
Plasticity Index 1.0 Is layer compacted? False Is User Defined? Val Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity (ft/hr) False 5.054e-C Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False	ue)2
Is layer compacted? False Is User Val Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity (ft/hr) False 5.054e-C Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False False	ue)2
Is User Defined? Val Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity (ft/hr) False 5.054e-C Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (sWCC) False	ue)2
Maximum dry unit weight (pcf) False 127.2 Saturated hydraulic conductivity False 5.054e-0 Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False Is User Defined? False)2
Saturated hydraulic conductivity (ft/hr) False 5.054e-C Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False	02
Specific gravity of solids False 2.7 Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) False	
Water Content (%) False 7.4 User-defined Soil Water Characteristic Curve (SWCC) Is User Defined? False	
User-defined Soil Water Characteristic Curve (SWCC) Is User Defined?	
Is User Defined? False	
And the second second in the second sec	
af 7.2555	
bf 1.3328	
cf 0.8242	
hr 117.4000	
Sieve Size % Passing	
0.001mm	
0.002mm	
0.020mm	
#200 8.7	
#100	
#80 12.9	
#60	
#50	
#40 20.0	
#30	
#20	
#16	
#10 33.8	
#8	
#4 44.7	
3/8-in. 57.2	
1/2-in. 63.1	
3/4-in. 72.7	
1-in. 78.8	
1 1/2-in. 85.8	
2-in. 91.6	
2 1/2-in.	
3-in.	
3 1/2-in. 97.6	

Report generated on: 11/7/2017 5:54 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 12 of 14

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-20ft-1in.dgpx

Layer 3 Subgrade : A-7-6

Unbound		
Layer thickness (in)	Semi-infinite	
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 10000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value			
Display name/identifier	A-7-6			
Description of object	Default material			
Author	AASHTO			
Date Created	1/1/2011 12:00:00 AM			
Approver				
Date approved	1/1/2011 12:00:00 AM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Sieve					
Liquid Limit			51.0		
Plasticity Index		30.0			
Is layer compacted?			False		
		ls Def	User ined?	Value	
Maximum dry unit weight (p	ocf)	Fals	e	97.7	
Saturated hydraulic conduc (ft/hr)	tivity	False		8.946e-06	
Specific gravity of solids		Fals	e	2.7	
Water Content (%)		Fals	e	22.2	
User-defined Soil Wate (SWCC)	r Ch	arac	teristi	c Curve	
Is User Defined?			False		
af			136.41	79	
bf			0.5183		
cf			0.0324		
hr			500.00	00	
Sieve Size	%	Pas	ssing		
0.001mm					
0.002mm					
0.020mm					
#200 7		9.1			
#100					
#80 8		1.9			
#60					
#50					
#40	88	88.8			
#30					
#20					
#16	-8033	a 1931			
#10	93	3.0			
#8	_				
#4	94	1.9			
3/8-in.	96	5.9			
1/2-in.	9,	⁷ .5			
ວ/4-in. 1 :ຫ	98	0.J			
1-IN.	98	0.8 0.2			
1 1/2-IN. 2 :	99	1.3			
2-IN.	99	1.0			
2 1/2-IN. 2 in					
ວ-III. 2.1/0 in	~	0			
ວ 172-IN.	99	1.9			

Report generated on: 11/7/2017 5:54 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 13 of 14

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-7in-20ft-1in.dgpx

Calibration Coefficients

PCC Faulting	g							
$C_{12} = C_1 +$	$-(C_2 * FR^{0.25})$							
$C_{34} = C_3 + (C_4 * FR^{0.25})$								
$FaultMax_0 = C_{12} * \delta_{curling} * \left[\log(1 + C_5 * 5.0^{\text{EROD}}) * \log\left(P_{200} * \frac{WetDays}{p_5}\right) \right]^{C_6}$								
FaultMax	$_{i} = FaultMax_{0} + C_{7} *$	$\sum_{j=1}^{m} DE_j * \log(1 + C_5 * 5)$	$(0^{EROD})^{C_6}$					
$\Delta Fault_i =$	$C_{34} * (FaultMax_{i-1} -$	$Fault_{i-1})^2 * DE_i$						
$C_8 = Down$	elDeterioration							
C1: 0.595	C2: 1.636	C3: 0.00217	C4: 0.00444					
C5: 250	C6: 0.47	C7: 7.3	C8: 400					
PCC Reliabi	lity Faulting Sta	Indard Deviation						
0 07162 * Pc	W(FAULT 0.368)	+ 0.00806						

IRI-jpcp					
C1 - Cracking	C1: 0.8203	C2: 0.4417			
C2 - Spalling	C3: 1.4929	C4: 25.24			
C3 - Faulting	Reliability Stan	dard Deviation			
C4 - Site Factor	5.4				

PCC Cracking

Estique Coefficients Cracking Coefficients					
$\log(N) = C1 \cdot (MR)^{C2}$		C2: 1 22	CA: 0.52		
σ	PCC Reliability C	racking Standard E	Deviation	002. 17	
$CRK = \frac{100}{1 + C4 FD^{C5}}$	3.5522 * Pow(CF	3.5522 * Pow(CRACK,0.3415) + 0.75			

Report generated on: 11/7/2017 5:54 PM

Version: 2.3.1+66

Approved^{by:} on: 5/9/2017 12:58 PM

Page 14 of 14

ICC-9in-15ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-15ft-1.5in.dgpx

Design Inputs

Design Life:	30 years	
Design Type:	JPCP	

Existing construction:
Pavement construction
Traffic opening:

n: June, 2019 July, 2019

Climate Data 42.398, -90.704 Sources (Lat/Lon)

Design Structure

Layer type	Material Type	Thickness (in)	Joint Design:
PCC	JPCP Default	9.0	Joint spacing (ft)
NonStabilized	Crushed gravel	10.0	Dowel diameter (in)
Subgrade	A-7-6	Semi-infinite	Slab width (ft)

		Traffic	
15.0		Age (year)	Heavy Trucks (cumulative)
1	1.50	2019 (initial)	1,500
1	12.0	2034 (15 years)	4,723,370
		2049 (30 years)	11,203,400

Design Outputs

Distress Prediction Summary						
Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	172.00	165.44	90.00	92.74	Pass	
Mean joint faulting (in)	0.12	0.06	90.00	99.99	Pass	
JPCP transverse cracking (percent slabs)	15.00	0.96	90.00	100.00	Pass	

Distress Charts

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

ICC-9in-15ft-1.5in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-15ft-1.5in.dgpx

Design Properties

JPCP Design Properties

Structure - ICM Properties		
PCC surface shortwave absorptivity	0.85	

PCC joint spacing (ft)	
Is joint spacing random ?	False
Joint spacing (ft)	15.00

Doweled Joints		Tied Shoulders	
Is joint doweled ?	True	Tied shoulders	True
Dowel diameter (in)	1.50	Load transfer efficiency (%)	40.00
Dowel spacing (in)	12.00		
Widened Slab		PCC-Base Contact Friction	
Is slab widened ?	False	PCC-Base full friction contact	True
Slab width (ft)	12.00	Months until friction loss	240.00
Sealant type Prefor	med	Erodibility index	2
Permanent curl/warp	effective temp	perature difference (°F)	-10.00

Report generated on: 11/7/2017 5:55 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 7 of 14

ICC-9in-15ft-1.5in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-15ft-1.5in.dgpx

Layer Information

Layer 1 PCC : JPCP Default

PCC			
Thickness (in)		9.0	
Unit weight (pcf)		138.5	
Poisson's ratio		0.2	
Thermal			
PCC coefficient of the 10^-6)	rmal expansion (in/in/⁰F x	4.3	
PCC thermal conduct	vity (BTU/hr-ft-ºF)	1.25	
PCC heat capacity (B	TU/lb-⁰F)	0.28	
Mix			
Cement type		Type I (1)	
Cementitious material	content (lb/yd^3)	550	
Water to cement ratio		0.43	
Aggregate type		Limestone (1)	
PCC zero-stress	Calculated Internally?	False	
temperature (⁰F)	User Value	101.9	
	Calculated Value	-	
Ultimate shrinkage	Calculated Internally?	False	
(microstrain)	User Value	592.0	
	Calculated Value	-	
Reversible shrinkage	(%)	50	
Time to develop 50% of ultimate shrinkage (days)		35	
Curing method		Wet Curing	
PCC strength and	modulus (Input Level	: 3)	
28-Day PCC comp	ressive strength (psi)	6070.0	
28-Day PCC elastic	c modulus (psi)	3950000.0	

Identifiers				
Field	Value			
Display name/identifier	JPCP Default			
Description of object				
Author				
Date Created	5/9/2017 12:58:38 PM			
Approver				
Date approved	5/9/2017 12:58:38 PM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Report generated on: 11/7/2017 5:55 PM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 11 of 14

ICC-9in-15ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-15ft-1.5in.dgpx

Layer 2 Non-stabilized Base : Crushed gravel

Unbound		
Layer thickness (in)	10.0	
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 38000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value			
Display name/identifier	Crushed gravel			
Description of object	Default material			
Author	AASHTO			
Date Created	1/1/2011 12:00:00 AM			
Approver				
Date approved	1/1/2011 12:00:00 AM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Sieve				
Liquid Limit			6.0	
Plasticity Index			1.0	
Is layer compacted?		False		
		ls Def	User ined?	Value
Maximum dry unit weight (pcf)		False		127.2
Saturated hydraulic conductiv (ft/hr)	ity _I	False		5.054e-02
Specific gravity of solids	ł	False		2.7
Water Content (%)	l	False		7.4
User-defined Soil Water C (SWCC)	Cha	rac	teristi	c Curve
Is User Defined?			False	
af			7.2555	
bf			1.3328	
cf			0.8242	
hr			117.40	00
Sieve Size	%	Pas	sing	
0.001mm				
0.002mm				
0.020mm				
#200	8.7	8.7		
#100				
#80	12	.9		
#60				
#50				
#40	20	.0		
#30				
#20				
#16	00	22.0		
#10	33	33.8		
#0	4.4	7		
¥4 44		57.0		
/o-in. 57.2		<u>1.2</u>		
72-111. 03. 8/4-in 72		72 7		
יווי-דיוו. 1-in	78	. <i>1</i> 8		
1 1/2.in		85.8		
2-in 0.		91.6		
2 1/2-in				
3-in	⊢			
3 1/2-in.	97	97.6		
5 ANTO 2010	- ·	140		

Report generated on: 11/7/2017 5:55 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 12 of 14

ICC-9in-15ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-15ft-1.5in.dgpx

Layer 3 Subgrade : A-7-6

Unbound				
Layer thickness (in)	Semi-infinite			
Poisson's ratio	0.35			
Coefficient of lateral earth pressure (k0)	0.5			

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 10000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value			
Display name/identifier	A-7-6			
Description of object	Default material			
Author	AASHTO			
Date Created	1/1/2011 12:00:00 AM			
Approver				
Date approved	1/1/2011 12:00:00 AM			
State				
District				
County				
Highway				
Direction of Travel				
From station (miles)				
To station (miles)				
Province				
User defined field 1				
User defined field 2				
User defined field 3				
Revision Number	0			

Sieve				
Liquid Limit		51.0		
Plasticity Index		30.0		
Is layer compacted?		False		
		ls Def	User ined?	Value
Maximum dry unit weight (pcl)	False		97.7
Saturated hydraulic conductiv (ft/hr)	/ity	False		8.946e-06
Specific gravity of solids		False		2.7
Water Content (%)		False		22.2
User-defined Soil Water ((SWCC)	Ch	arac	teristi	c Curve
Is User Defined?			False	
af	_		136.41	79
bf			0.5183	
cf			0.0324	2.2
hr			500.00	00
Sieve Size	%	Pas	ssing	
0.001mm				
0.002mm				
0.020mm				
#200	79	79.1		
#100				
#80	84	34.9		
#60				
#50		- 143		
#40	88	38.8		
#30	_			
#20				
#16				
#10	93	93.0		
#8	0	04.0		
#4 94		94.9		
3/8-in. 96		96.9		
1/∠-in. 9/ 3/4 in 0º		97.0		
3/4-in. 98		90.0 Q8 8		
1-in. 98		90.0 00 3		
2-in	a	99.0		
- "" 2 1/2-in	38			
3-in	┢			
3 1/2-in	90	99		
o nemi	100			

Report generated on: 11/7/2017 5:55 PM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 13 of 14

ICC-9in-15ft-1.5in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-15ft-1.5in.dgpx

Calibration Coefficients

$C_{12} = C_1 +$	(Ca * FR ^{0.25})		
$C_{12} = C_1 + C_3 + C$	$-(C_4 * FR^{0.25})$		
FaultMax	$_{0}=C_{12}*\delta_{curling}*\left[lo$	$g(1+C_5*5.0^{EROD})*\log$	$g\left(P_{200} * \frac{WetDays}{p_S}\right) \Big]^{C_6}$
FaultMax	$_i = FaultMax_0 + C_7 *$	$\sum_{j=1}^{m} DE_j * \log(1 + C_5 * 5)$.0 ^{EROD})C.
		<u>j=1</u>	
AFmult =	Ca. * (FaultMax	- Foult ,)2 * DE	
$\Delta Fault_i = C_8 = Dowe$	C ₃₄ * (FaultMax _{i-1} – elDeterioration	$-Fault_{i-1})^2 * DE_i$	
$\Delta Fault_i = C_8 = Dowe$ C1: 0.595	C ₃₄ * (FaultMax _{i-1} - elDeterioration C2: 1.636	$-Fault_{i-1})^2 * DE_i$ C3: 0.00217	C4: 0.00444
$\Delta Fault_i = C_8 = Down$ C1: 0.595 C5: 250	C ₃₄ * (FaultMax _{i-1} - elDeterioration C2: 1.636 C6: 0.47	$Fault_{i-1}^{2} * DE_{i}$ C3: 0.00217 C7: 7.3	C4: 0.00444 C8: 400
$\Delta Fault_i = C_8 = Down$ C1: 0.595 C5: 250 PCC Reliabi	C ₃₄ * (FaultMax _{i-1} - elDeterioration C2: 1.636 C6: 0.47 lity Faulting Sta	C3: 0.00217 C7: 7.3 andard Deviation	C4: 0.00444 C8: 400

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	

PCC Cracking

i oo oracking				
MD	Fatigue Coefficients		Cracking Coefficients	
$\log(N) = C1 \cdot (\frac{M2N}{m})^{C2}$	C1:2	C2: 1.22	C4: 0.52	C5: -2.17
σ	PCC Reliability Cracking Standard Deviation			
CPV = 100	3.5522 * Pow(CRACK,0.3415) + 0.75			
$\frac{C}{1+C4} FD^{C5}$				

Report generated on: 11/7/2017 5:55 PM

Version: 2.3.1+66

Approved^{by:} on: 5/9/2017 12:58 PM

Page 14 of 14

ICC-9in-20ft-1.5in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-20ft-1.5in.dgpx

Design Inputs

Design Life:	30 years	
Design Type:	JPCP	

Existing construction:
Pavement construction
Traffic opening:

n: June, 2019 July, 2019

Climate Data Sources (Lat/Lon) 42.398, -90.704

Design Structure

Layer type	Material Type	Thickness (in)	Joint Design:
PCC	JPCP Default	9.0	Joint spacing (ft)
NonStabilized	Crushed gravel	10.0	Dowel diameter (in)
Subgrade	A-7-6	Semi-infinite	Slab width (ft)

		Traffic		
1	20.0	Age (year)	Heavy Trucks (cumulative)	
1	1.50	2019 (initial)	1,500	
1	12.0	2034 (15 years)	4,723,370	
		2049 (30 years)	11,203,400	

Design Outputs

Distress Prediction Summary						
Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	172.00	167.98	90.00	91.76	Pass	
Mean joint faulting (in)	0.12	0.08	90.00	99.66	Pass	
JPCP transverse cracking (percent slabs)	15.00	2.37	90.00	100.00	Pass	

Distress Charts

Report generated on:	
11/9/2017 10:58 AM	

Version: 2.3.1+66 Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

0.08

0.04

....

30

ICC-9in-20ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-20ft-1.5in.dgpx

Design Properties

JPCP Design Properties

Structure - ICM Properties		
PCC surface shortwave absorptivity	0.85	

PCC joint spacing (ft)		
Is joint spacing random ?	False	
Joint spacing (ft)	20.00	

Doweled Joints		Tied Shoulders	
Is joint doweled ?	True	Tied shoulders	True
Dowel diameter (in)	1.50	Load transfer efficiency (%)	40.00
Dowel spacing (in)	12.00		
Widened Slab		PCC-Base Contact Friction	
Is slab widened ?	False	PCC-Base full friction contact Tr	
Slab width (ft) 12.00		Months until friction loss	240.00
Sealant type Prefor	med	Erodibility index	2
Permanent curl/warp	effective temp	perature difference (°F)	-10.00

Report generated on: 11/9/2017 10:58 AM Version: 2.3.1+66

Approved^{by:} on: 5/9/2017 12:58 PM

Page 7 of 14

ICC-9in-20ft-1.5in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-20ft-1.5in.dgpx

Layer Information

Layer 1 PCC : JPCP Default

PCC		
Thickness (in)		9.0
Unit weight (pcf)		138.5
Poisson's ratio		0.2
Thermal		
PCC coefficient of the 10^-6)	rmal expansion (in/in/⁰F x	4.3
PCC thermal conduct	vity (BTU/hr-ft-ºF)	1.25
PCC heat capacity (B	TU/lb-⁰F)	0.28
Mix		
Cement type		Type I (1)
Cementitious material	content (lb/yd^3)	550
Water to cement ratio		0.43
Aggregate type	Limestone (1)	
PCC zero-stress	Calculated Internally?	False
temperature (⁰F)	User Value	101.9
	Calculated Value	
Ultimate shrinkage	Calculated Internally?	False
(microstrain)	User Value	592.0
	Calculated Value	1.00
Reversible shrinkage	(%)	50
Time to develop 50% (days)	35	
Curing method	Wet Curing	
PCC strength and	modulus (Input Level	: 3)
28-Day PCC comp	ressive strength (psi)	6070.0
28-Day PCC elastic	3950000.0	

Identifiers		
Field	Value	
Display name/identifier	JPCP Default	
Description of object		
Author		
Date Created	5/9/2017 12:58:38 PM	
Approver		
Date approved	5/9/2017 12:58:38 PM	
State		
District		
County		
Highway		
Direction of Travel		
From station (miles)		
To station (miles)		
Province		
User defined field 1		
User defined field 2		
User defined field 3		
Revision Number	0	

Report generated on: 11/9/2017 10:58 AM

Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM

Approved^{by:} on: 5/9/2017 12:58 PM

Page 11 of 14

ICC-9in-20ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-20ft-1.5in.dgpx

Layer 2 Non-stabilized Base : Crushed gravel

Unbound		
Layer thickness (in)	10.0	
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 38000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve				
Liquid Limit			6.0	
Plasticity Index		1	1.0	
Is layer compacted?			False	
	l D	s ef	User ined?	Value
Maximum dry unit weight (pcf)	Fa	False 127.2		127.2
Saturated hydraulic conductivi (ft/hr)	^{ty} Fa	False		5.054e-02
Specific gravity of solids	Fa	False		2.7
Water Content (%)	Fa	lse	e	7.4
User-defined Soil Water C (SWCC)	hara	ac	teristi	c Curve
Is User Defined?			False	
af			7.2555	
bf			1.3328	
cf			0.8242	
hr			117.40	00
Sieve Size	% P	as	sing	
0.001mm				
0.002mm				
0.020mm				
#200 8.				
#100				
#80	12.9	1		
#60				
#50				
#40 20.0		0.0		
#30				
#20				
#16				
#10	33.8			
#8		_		
#4	44.7			
3/8-in.	57.2			
1/2-in.	63.1			
3/4-IN.	72.7			
1-in. 78		/ð.ð 95 9		
1 1/2-in. 8		00.0 01.6		
∠-111. 2.1/2 in	91.0	8		
∠ 1/∠-111. 2 in				
0-111. 3 1/2 in	07 F	2		
J 1/2-III.	91.0			

Report generated on: 11/9/2017 10:58 AM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 12 of 14

ICC-9in-20ft-1.5in

File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-20ft-1.5in.dgpx

Layer 3 Subgrade : A-7-6

Unbound		
Layer thickness (in)	Semi-infinite	
Poisson's ratio	0.35	
Coefficient of lateral earth pressure (k0)	0.5	

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 10000.0

Use Correction factor for NDT modulus? -NDT Correction Factor: -

Identifiers

Field	Value		
Display name/identifier	A-7-6		
Description of object	Default material		
Author	AASHTO		
Date Created	1/1/2011 12:00:00 AM		
Approver			
Date approved	1/1/2011 12:00:00 AM		
State			
District			
County			
Highway			
Direction of Travel			
From station (miles)			
To station (miles)			
Province			
User defined field 1			
User defined field 2			
User defined field 3			
Revision Number	0		

Sieve				
Liquid Limit			51.0	
Plasticity Index		30.0		
Is layer compacted?			False	
		ls Def	User ined?	Value
Maximum dry unit weight (pcl)	False 97.		97.7
Saturated hydraulic conductiv (ft/hr)	/ity	False		8.946e-06
Specific gravity of solids		False		2.7
Water Content (%)		False		22.2
User-defined Soil Water ((SWCC)	Ch	arac	teristi	c Curve
Is User Defined?			False	
af	_		136.41	79
bf			0.5183	
cf			0.0324	
hr			500.00	00
Sieve Size	%	Pas	ssing	
0.001mm				
0.002mm				
0.020mm				
#200	79	79.1		
#100				
#80	84	1.9		
#60				
#50		- 143		
#40	88	8.8		
#30	_			
#20				
#16	~			
#10	93	5.0		
#8	0.	10		
7/8 in	94.9			
1/2 in	90).9 7 5		
1/2-111. 3//1 in	91	33		
0/4-m. 1₋in	90	3.8		
1-in. 9i		90.0 00 3		
1 1/∠-in. 99 2-in oo		99.0		
- "" 2 1/2-in	38			
3-in	┢			
3 1/2-in	90	99		
o nemi	100			

Report generated on: 11/9/2017 10:58 AM Version: 2.3.1+66

Created^{by:} on: 5/9/2017 12:58 PM Approved^{by:} on: 5/9/2017 12:58 PM

Page 13 of 14

ICC-9in-20ft-1.5in
File Name: C:\Users\IPDC\Documents\Pavement ME runs, May 2017\Nov. 6th\Final\Design\IC concrete\ICC-9in-20ft-1.5in.dgpx

Calibration Coefficients

PUC Faulting	g		
$C_{12} = C_1 + C_2$	$(C_2 * FR^{0.25})$		
$C_{34} = C_3 +$	$+(C_4 * FR^{0.25})$		<i>.</i>
FaultMax	$_{0} = C_{12} * \delta_{curling} * \left[lo \right]$	$g(1+C_5*5.0^{EROD})*\log_{m}$	$g\left(P_{200} * \frac{WetDays}{p_s}\right)\Big]^{c_s}$
FaultMax	$_{i} = FaultMax_{0} + C_{7} *$	$\sum_{j=1}^{m} DE_j * \log(1+C_5 * 5)$	$(0^{EROD})^{C_6}$
$\Delta Fault_i =$	$C_{34} * (FaultMax_{i-1} -$	$-Fault_{i-1})^2 * DE_i$	
$C_8 = Down$	elDeterioration		
	00.4.000	00.00017	C4: 0.00444
C1: 0.595	C2: 1.636	C3: 0.00217	C4: 0.00444
C1: 0.595 C5: 250	C2: 1.636 C6: 0.47	C3: 0.00217 C7: 7.3	C4: 0.00444 C8: 400
C1: 0.595 C5: 250 PCC Reliabi	C2: 1.636 C6: 0.47 lity Faulting Sta	C7: 7.3 C7: 7.3	C8: 400

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	

PCC Cracking

1 00 Gracking				
MD	Fatigue Coefficients		Cracking Coefficients	
$\log(N) = C1 \cdot (\frac{MIN}{C2})^{C2}$	C1: 2 C2: 1.22		C4: 0.52	C5: -2.17
σ	PCC Reliability Cracking Standard Deviation			
CPV = 100	3.5522 * Pow(CRACK,0.3415) + 0.75			
$\frac{1+C4}{1+C4} FD^{cs}$				

Report generated on: 11/9/2017 10:58 AM

Version: 2.3.1+66

Approved^{by:} on: 5/9/2017 12:58 PM

Page 14 of 14

THE INSTITUTE FOR TRANSPORTATION IS THE FOCAL POINT FOR TRANSPORTATION AT IOWA STATE UNIVERSITY.

InTrans centers and programs perform transportation research and provide technology transfer services for government agencies and private companies;

InTrans manages its own education program for transportation students and provides K-12 resources; and

InTrans conducts local, regional, and national transportation services and continuing education programs.

Visit www.InTrans.iastate.edu for color pdfs of this and other research reports.