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EXECUTIVE SUMMARY 

This project focused on managing dynamic speed limit signs (a type of highway infrastructure 

that helps control traffic speeds) in order to reduce total fuel consumption during a specific time 

period while considering traffic flow dynamics. This involved integrating a changing inflow of 

traffic in real-time at a series of control intervals.  

To generate a traffic control model that is computationally efficient and facilitate searching for 

an optimal control command, the researchers aimed to formulate the optimization performance 

index and dynamic traffic flow model via convex functions. In this vein, the convex optimization 

approach generated optimal speed profiles within polynomial computational time. Furthermore, a 

distributed framework was constructed based on dual decomposition and the subgradient method 

via networked road infrastructures. 
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INTRODUCTION 

Large-scale, complex transportation systems are some of the most indispensable infrastructures 

in urban and rural areas. The dramatically increasing demands of transportation service lead to 

traffic congestion, energy waste, and pollution, as well as safety issues. To deal with these issues, 

intelligent traffic management strategies that rely on advanced sensing, communication, and 

high-performance computation techniques are attracting researchers’ attention.  

Recent work in the area of intelligent transportation systems has mostly focused on modeling and 

reducing travel time (Daganzo 1995, Li et al. 2014a) or minimizing delay at signalized 

intersections (Guler et al. 2014, Sims and Dobinson 1980). If fuel consumption is considered in 

evaluating transportation system performance, it is necessary to analyze the effectiveness of 

current traffic control systems in terms of energy efficiency while guaranteeing the 

accomplishment of transportation tasks within a desired timeframe. 

An energy-efficient transportation system aims at reducing fuel consumption and emissions (e.g., 

CO, NO, CH4) through eco-driving guidance. Existing eco-driving strategies for individual 

driving guidance focus on training drivers’ behaviors (e.g., smooth acceleration, maintaining 

steady speeds, and avoiding speeds that are too fast) and have been verified to improve fuel 

economy on the order of 5 to 20 percent (Barkenbus 2010). However, changing driver behavior 

is a long-term effort and static driving advice may not guarantee prominent effects in dynamic 

traffic environments.  

Recent studies of dynamic guidance strategies through energy-efficient traffic control include 

adjusting signal periods at intersections on urban roads (Li and Shimamoto 2012, Ozatay et al. 

2012) and controlling the on-ramp metering rate for a proper volume of additional vehicle flow 

to the highway mainstream (Dai et al. 2015, Pasquale et al. 2014, Zegeye et al. 2013). 

Most existing eco-driving strategies have not included a dynamic traffic flow model that 

characterizes the evolution of traffic flow velocity and density (Alsabaan et al. 2010, Barth et al. 

2011). Although a second-order macroscopic traffic flow model (METANET) has been adopted 

in energy-efficient traffic management, it is time consuming to find a convergent solution when a 

highly nonlinear traffic flow model is considered (Zegeye 2011). Speed intervals have been used 

to obtain an approximate solution without solving highly nonlinear dynamics, which ultimately 

results in accumulative errors over time (Dai et al. 2015). 

The macroscopic traffic flow model was first introduced by Lighthill and Whitham in the 1950s 

(Lighthill and Whitham 1955) and was intensively investigated afterward. The fundamental 

traffic flow model is based on the continuous conservation law in the form of partial differential 

equations (PDEs). For example, Lighthill-Whitham-Richard (LWR) PDEs can be solved through 

discrete integration methods such as the forward and backward Euler method (Press et al. 1992). 

Traditional numerical methods used to solve LWR PDEs lead to an approximate solution due to 

the reduced model.  
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Inspired by the Barron-Jensen/Frankowska (B-J/F) solution for Hamilton-Jacobi (HJ) PDEs 

(Barron and Jensen 1990), the researchers adopted the B-J/F solution to Moskowitz HJ PDEs 

(Bayen et al. 2007, Lighthill and Whitham 1955, Richards 1956) to obtain exact solutions 

without approximation. The solution can be explicitly expressed based on a pre-specified 

fundamental diagram (Greenshields et al. 1935) associated with initial and boundary conditions. 

Furthermore, the solution to Moskowitz HJ PDEs can be simplified based on roadway 

decomposition and traffic status.  

Combing the simplified solution to Mozkowitz HJ PDEs with the quadratic formulation of the 

Computer Programme to calculate Emissions from Road Transport (COPERT) fuel consumption 

model (Ntziachristos et al. 2000), the researchers formulated the energy-efficient traffic control 

problem as a convex quadratic optimization problem (CQOP). Furthermore, a distributed 

framework was constructed to circumvent the utilization of global information. Dual 

decomposition and the subgradient method were implemented so that each decomposed 

subproblem could be solved individually in an iterative manner. The road infrastructures (RIs) 

that integrate the functions of measuring, displaying, communication, and computation were 

installed at each decomposed road segment to guide drivers to travel at an optimal desired speed. 

The contributions of our work are as follows: 

 The work in Claudel and Bayen (2010a) and Claudel and Bayen (2010b) presents explicit 

solutions and model constraints using the triangular fundamental diagram associated with 

initial and boundary conditions. Based on that, the researchers developed an explicit solution 

to Moskowitz HJ PDEs and model constraints using a parabolic-shaped fundamental 

diagram. Moreover, a simplified model with linear constraints was proposed. 

 The energy-efficient traffic control problem was formulated as a CQOP, which was 

computationally efficient. 

 Experimental verification was accomplished in Vissim simulation environments using real-

world traffic flow data on segments of I-235 in Iowa. We constructed a component object 

model (COM) interface to build a connection between MATLAB and the Vissim 

simulations. Furthermore, we present a framework of data and control flow applicable to 

real-time implementation. 

 A distributed framework was constructed and applied optimal traffic control problems. It was 

supported by local RI networks that depend on local traffic information exchanges. The 

distributed framework significantly reduced computational complexity by decomposing a 

centralized optimization problem into a set of small-scale subproblems. Meanwhile, local 

information transmission effectively avoided missing data or redundancy. 

 The above results led to two published conference papers and one journal paper under review 

(Dai et al. 2015, Zu et al. 2016a, Zu et al. 2016b).  



3 

PROBLEM DESCRIPTION 

The one-dimensional, uniform highway section considered in this project was represented by 

 [𝜉, 𝜒], where ξ and χ are upstream and downstream boundaries. The vehicle density was denoted 

as 𝜌(𝑡, 𝑥) per unit length for local position 𝑥 ∈ [𝜉, 𝜒] at time 𝑡 ∈ [0, 𝑡𝑀]. The inflow and outflow 

were denoted as 𝑄𝜉 and 𝑄𝜒, respectively. The vehicle velocity was a function of 𝜌 and was 

denoted as  𝑣 = 𝑣(𝜌(𝑡, 𝑥)). The goal of the proposed traffic control strategy was to minimize the 

fuel consumption of vehicles on the specific highway section for a desired time interval based on 

current traffic status by controlling dynamic speed limit signals. An example of a traffic control 

scenario is shown in Figure 1. 

 

Figure 1. Sample traffic control scenario  

The arrows at the beginning and ending upstream and downstream boundaries show the vehicle 

flow direction, while arrows pointing off from and onto the main road section denote on-ramps 

and off-ramps. Rectangles outline the sensor installation locations for volume measurement, 

while the dynamic speed limit signs are located at the starting point of each road segment. 
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TRAFFIC FLOW DYNAMICAL MODEL 

Cauchy Problem 

The first order traffic flow model is known as the LWR PDE, written as follows: 

 (1) 

The LWR PDE is the fundamental traffic flow model based on the continuous conservation law. 

By introducing the cumulated vehicle count 𝑁(𝑡, 𝑥), the vehicle density and flow could be 

calculated directly from the partial derivatives with respect to local position x and time t in the 

following forms: 

 (2) 

 (3) 

Substituting 𝜌(𝑡, 𝑥) and 𝑄(𝑡, 𝑥) in Equation (1) by (2) and (3), and then integrating both sides 

with respect to the local position, generated the Moskowitz HJ PDE: 

 (4) 

Considering the initial, upstream, and downstream boundary conditions (i.e., 𝑐𝑖𝑛𝑖(𝑥), 𝑐𝑢𝑝(𝑡), and 

𝑐𝑑𝑜𝑤𝑛(𝑡)) together with the Moskowitz HJ PDE, the Cauchy problem (Mazaré et al. 2011) was 

formulated as follows: 

 (5) 

The fuel-efficient traffic control problem was to minimize fuel consumption while satisfying the 

four equality constraints of the Cauchy problem, listed above, by designing control variables 

𝑣(𝑡, 𝑥). 
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Barron-Jensen/Frankowska Solution 

The researchers aggregated initial, upstream, and downstream boundary conditions in a value 

condition function, 𝑐(𝑡, 𝑥); then, the B-J/F solution to Equation (4) could be represented as 

follows (Claudel and Bayen 2010a): 

 (6) 

where the convex transform 𝑅(𝑢) is defined as follows: 

 (7) 

with   | 0
j

dQ
w

d
 


   and 𝜌𝑗 > 0 denoting the jam density and 0  | 0f

dQ
v

d



   denoting the 

free-flow speed. However, the solution to the HJ PDE may not be compatible with value 

conditions. Based on the Inf-morphism property (Claudel 2010) and Lax-Hopf formula in 

Equation (6), the last three equalities in the Cauchy problem could be converted into a set of 

inequalities. 

Lemma 1 Compatibility Conditions: The solution to HJ PDE was characterized by the Inf-

morphism property (Li et al. 2014b), i.e., 𝒄(𝑡, 𝑥) = min
𝑙∈𝐿

𝑐𝑙(𝑡, 𝑥), where L is the index number of 

the value condition, the solution 𝑵𝒄(𝑡, 𝑥) = min
𝑙∈𝐿

𝑁𝑐𝑙
(𝑡, 𝑥) for (𝑡, 𝑥) ∈ [0, 𝑡𝑀] × [𝜉, 𝜒]. The B-J/F 

solution to Equation (4) satisfied the value conditions when, and only when, 

 (8) 

Inequalities in Equation (8) represent the model constraints. By considering these constraints, the 

B-J/F solutions were reduced to a subset representing the exact solution to the Cauchy problem. 

The solution to the HJ PDE could be explicitly expressed based on the Lax-Hopf formula. These 

expressions were integrated with piecewise affine value conditions to formulate model 

constraints. The researchers first defined initial and boundary conditions as explained in the 

following sections. 

Piecewise Affine Initial and Boundary Conditions 

The time period [0, 𝑡𝑀] and highway section [𝜉, 𝜒] were discretized into several small intervals 

using time step T and spatial step X. The initial vehicle density, 𝜌(0, 𝑥𝑘), 𝑘 = 0, … , 𝑘𝑚, was 

assumed to be identical within the segment [𝑥𝑘, 𝑥𝑘+1]. Inflow and outflow remained constant 

during each time interval [𝑡𝑛, 𝑡𝑛+1] indexed by 𝑛 = 0, … , 𝑛𝑚. The initial and boundary 
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conditions, 𝑐𝑖𝑛𝑖, 𝑐𝑢𝑝 and 𝑐𝑑𝑜𝑤𝑛, can be decomposed into an affine, locally defined condition set 

(i.e.,𝑐𝑖𝑛𝑖
𝑘 , 𝑐𝑢𝑝

𝑛  and 𝑐𝑑𝑜𝑤𝑛
𝑛 ). For example, the negative initial condition,  −𝑐𝑖𝑛𝑖

𝑘 (𝑡, 𝑥), represents the 

total number of vehicles at initial time contained between [𝜉, 𝜒]. The upstream condition, 

 𝑐𝑢𝑝
𝑛 (𝑡, 𝑥), depicts the total number of vehicles entering the roadway from initial to current time, 

t. Hence, the piecewise affine equations were summarized regarding initial and boundary 

conditions as follows (Canepa and Claudel 2012): 

 (9) 

 (10) 

 (11) 

B-J/F Explicit Solution Associated with Initial and Boundary Conditions 

The relationship between 𝑄 and 𝜌 is represented by a fundamental diagram 𝑄(𝜌), which is 

established from empirical measurements. The flow-density curve can be triangular or parabolic 

in shape. In this section, the researchers describe the adopted Greenshields model, which is one 

of the typical parabolic-shaped models. The comparison to using the triangular model is also 

described. 

First, 𝑄(𝜌) was substituted with the Greenshields flow density model in Equation (7). Since 

𝑄(𝜌) −
𝑥−𝑥𝑘

𝑡
𝜌 is concave, the supremum can be found by satisfying the first order necessary 

condition. The transformed 𝑅(
𝑥−𝑥𝑘

𝑡
) was explicitly expressed as follows: 
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 (12) 

Based on the solutions to the Moskowitz function provided from Equations (21), (24), and (27), 

which are explained below (from Mazaré et al. 2011), Q and R were replaced by the 

Greenshields model and the expressions in Equation (12), respectively. The B-J/F explicit 

solutions were obtained as follows. The initial condition included two cases: the initially 

uncongested case when 0 ≤ 𝜌(0, 𝑥) ≤ 𝜌𝑐, where 𝜌𝑐 denotes the critical density,  

 (13) 

and the initially congested case when 𝜌𝑐 ≤ 𝜌(0, 𝑥) ≤ 𝜌𝑗, 

 (14) 

where  
 

 0,
  ' |

k
k x

dQ
Q

d
 




 
 . For the upstream boundary condition, the corresponding 

explicit solution based on the Lax-Hopf formula was as follows: 
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 (15) 

For the downstream boundary condition, the corresponding explicit solution based on the Lax-

Hopf formula was as follows: 

 (16) 

where 𝑇0(𝜌𝑢𝑝) =
𝑥−𝜉

𝑄′(𝜌𝑢𝑝)
, 𝑇0(𝜌𝑑𝑜𝑤𝑛) =

𝑥−𝜒

𝑄′(𝜌𝑑𝑜𝑤𝑛)
, 𝜌𝑢𝑝 = min{𝜌 ∈ [0, 𝜌𝑗]|𝑄(𝜌) = 𝑄(𝑡, 𝜉)}, and 

𝜌𝑑𝑜𝑤𝑛 = max {𝜌 ∈ [0, 𝜌𝑗]|𝑄(𝜌) = 𝑄(𝑡, 𝜒)}. In the next section, the researchers discuss the 

simplified form of Equations (13) through (16) for cases with relatively large traffic inflow and 

outflow. 

Simplified B-J/F Solution 

Assumption 1. A one-lane highway with a relatively long distance can be decomposed into 

several segments with identical distances of X for each segment. The B-J/F solution can then be 

implemented in each of these segments. 

Assumption 2. The highway section is required to handle cases with relatively large vehicle 

flows (i.e., flow at origin and ending close to road capacity 𝑄𝑐). In other words, the section has 

(1 −
1

√𝑞
) 𝜌𝑐 ≤ 𝜌𝑢𝑝 ≤ 𝜌𝑐 and𝜌𝑐 ≤ 𝜌𝑑𝑜𝑤𝑛 ≤ (1 +

1

√𝑞
) 𝜌𝑐, where 𝑞 is a user-specified parameter 

determining the bounds of constraints. Substituting the above bounds on 𝜌𝑢𝑝 and 𝜌𝑑𝑜𝑤𝑛 in the 
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𝑇0(𝜌𝑢𝑝) and 𝑇0(𝜌𝑑𝑜𝑤𝑛) expressions, respectively, yields 𝑇0(𝜌𝑢𝑝) ≥ √𝑞
𝑥−𝜉

𝑣𝑓
 and 𝑇0(𝜌𝑑𝑜𝑤𝑛) ≥

√𝑞
𝜒−𝑥

𝑣𝑓
. 

Each road segment is regarded as an individual object with associated length, 𝑋, jam density, 𝜌𝑗, 

and free-flow speed, 𝑣𝑓, after decomposition. To make it simple, we used the same notation X, 

𝜌𝑗, and 𝑣𝑓 in the simplified B-J/F solution.  

Assumption 1 simply sets the initial density to be 𝜌(0,0), 𝜌(0, 𝑋), and denotes 𝜌𝑖𝑛𝑖 = 𝜌(0,0) as 

vehicle density for each segment. To simplify the representation, 𝜌𝑖𝑛𝑖 was used for different 

segments in the following derivation. Furthermore, the plot of the function in Equation (15) in 

Figure 2 demonstrates that the slope of tangent line at each time instance increased when 𝑡 varied 

from 𝑡𝑛 +
𝑥−𝜉

𝑣𝑓
 to 

𝑣𝑓𝜌𝑗

4
. 

 

Figure 2. Sketch of function shown in Equation (15) 

Similar conclusions can be derived from the solution curve associated with the downstream 

boundary condition. Assumption 2 introduces a linear approximation for Equations (15) and (16) 

when𝑡 ≥ √𝑞
𝑋

𝑣𝑓
. Based on these discussions, the initial and boundary conditions for each road 
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segment, with modified notations of 𝑄𝑢𝑝
𝑡 = 𝑄(𝑡, 0),  𝑄𝑢𝑝

𝑡 = 𝑄(𝑡, 𝑋), and ρini are expressed as 

follows: 

 (17) 

 (18) 

 (19) 

With the updated initial and boundary conditions, the B-J/F solution associated with the initial 

condition was simplified. For the initially free-flow case, with 0 ≤ 𝜌𝑖𝑛𝑖 ≤ 𝜌𝑐, the solution 

reduces to the following: 

 (20) 

For the initially congested case, with 𝜌𝑐 ≤ 𝜌𝑖𝑛𝑖 ≤ 𝜌𝑗, the solution becomes the following: 
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 (21) 

The solution components associated with boundary conditions become the following: 

 (22) 

 (23) 

where 𝑎, 𝑒 are slopes of the tangent line at the corresponding time and 𝑏, 𝑓 are the relative 

function values at 𝑡 = 𝑡𝑛 + √𝑞
𝑥

𝑣𝑓
 and  𝑡 = 𝑡𝑛 + √𝑞

𝑋−𝑥

𝑣𝑓
. 

Model Constraints 

As described above, the B-J/F solution is an exact solution to the Cauchy problem if the 

inequality of Equation (8) holds. The researchers reduced these continuous inequalities for 

∀(𝑡, 𝑥) ∈ 𝐷𝑜𝑚(𝑐𝑗) into a series of discrete inequalities by discretizing the continuous time 

interval into a set of small time intervals with step size T = 1 sec. By utilizing the linear 

interpolation on [pT, (p+1)T], the piecewise affine functions were built with respect to time, t. 

Therefore, the discrete inequality constraints are expressed as follows: 
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 (24) 

Constraints (i) and (iii) in Equation (24) were satisfied for 𝑥 ∈ [𝜉, 𝜒], 𝑡 ∈ [0, 𝑡𝑀] in the simplified 

solution (Claudel and Bayen 2010a). The remaining constraints in Equation (24) were replaced 

by corresponding expressions defined in Equations (17) through (23). For an initially free-flow 

condition, with 𝜌𝑖𝑛𝑖 ≤ 𝜌_𝑐, and a discrete time index or 𝜌 ∈ [𝑛, 𝑛𝑚] for  𝑡 ∈ [𝑝𝑇, (𝑝 + 1)𝑇], 
constraints (ii) and (iv) in Equation (24) become the following: 

 (25) 

 (26) 

For initially congested conditions with 𝜌𝑖𝑛𝑖 ≥ 𝜌𝑐, constraints (ii) and (iv) in Equation (24) 

become the following: 
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 (27) 

 (28) 

For 𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛 + √𝑞
𝑋

𝑣𝑓
, constraints (v) and (vi) in Equation (24) become the following: 

 (29) 

 (30) 

where 𝑊 = ∑ (𝑄𝑢𝑝
𝑡𝑙 − 𝑄𝑑𝑜𝑤𝑛

𝑡𝑙 )𝑇 + (𝜌𝑖𝑛𝑖 −
𝜌𝑗

2
)𝑋𝑛−1

𝑡=0 . For 𝑡 ≥ 𝑡𝑛 + √𝑞
𝑋

𝑣𝑓
, constraints (v) and (vi) 

in Equation (24) become the following: 

  (31) 

 (32) 

Expressions in Equation (24) are model constraints describing traffic flow dynamics. Constraints 

shown in Equations (25) and (28) have been verified in Claudel and Bayen (2010a) because 
𝑣𝑓𝜌𝑗

4
≥ 𝑚𝑎𝑥𝑡∈[0,𝑡𝑀]{𝑄𝑢𝑝

𝑡 , 𝑄𝑑𝑜𝑤𝑛
𝑡 }. Hence, both of these constraints are ignored in the formulation 

of the optimization problem described in the following chapter. 
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FUEL CONSUMPTION MODEL 

The COPERT model is a macroscopic model that estimates the emission and fuel consumption 

rate based on average vehicle speed (Zegeye 2011). The quadratic form of emission or fuel 

consumption with respect to average speed ,va, is expressed as follows: 

 (33) 

where 𝑐0, 𝑐1, and 𝑐2 are parameters specified in terms of vehicle categories such as passenger 

cars, light-duty vehicles, and heavy-duty vehicles. The researchers defined average vehicle speed 

at time t and location x as 𝑣𝑎(𝑡, 𝑥) = {𝑣𝑎(𝑡, 𝑥) ∈ [0, 𝑣𝑓]}. From the Greenshields fundamental 

diagram, 𝑣𝑎 =
𝑄(𝜌𝑎)

𝜌𝑎
= −

𝑣𝑓

𝜌𝑗
𝜌𝑎(𝑡, 𝑥) + 𝑣𝑓, where 𝜌𝑎(𝑡, 𝑥) =

(𝑄𝑢𝑝
(𝑡,𝑥)

−𝑄𝑑𝑜𝑤𝑛
(𝑡,𝑥)

)𝑇+𝜌(𝑡,𝑥)

𝑋
 is the average 

vehicle density. 

Assuming vehicles belong to the EURO I class, the speed range is 13.1 km/h (8 mph) to 130 

km/h (81 mph), with a cylinder capacity range of 1.41 to 2.01 L for each vehicle, and the 

performance index is then based on a fuel consumption rate in g/km, which is constructed as 

follows:  

 (34) 

where the superscript of 𝑋𝑘,  𝑣𝑓
𝑘, and 𝜌𝑗

𝑘 denotes the segment index k. The quadratic form of the 

objective function is determined by 𝑄𝑢𝑝
(𝑡𝑛,𝑥𝑘)

 and 𝑄𝑑𝑜𝑤𝑛
(𝑡𝑛,𝑥𝑘)

. The performance index in Equation 

(34) denotes the fuel consumed on road section [𝜉, 𝜒] during the time interval [𝑡𝑛+1, 𝑡𝑛+2], given 

the density of  𝜌(𝑡𝑛, 𝑥𝑘). Moreover, the Hessian matrix of the above objective function in 

Equation (34) is expressed as follows: 
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 (35) 

with 𝑝𝑘 = 2𝑐0 (
𝑣𝑓

𝑘

𝜌𝑗
𝑘

𝑇

𝑋𝑘
)

2

, as positive semi-definite, which implies a convex objective function. 
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FORMULATION OF CONVEX OPTIMIZATION PROBLEM 

For this project, the additional traffic inflow and outflow from on-ramp and off-ramp traffic were 

considered. The volume on each off-ramp was assumed to be proportional to the corresponding 

main highway section volume with a constant ratio of 𝑅𝑜𝑓𝑓
𝑥𝑘 , while the on-ramp vehicle volume 

was assumed constant, as denoted by 𝐶𝑜𝑛
𝑥𝑘. Thus, additional linear equality constraints related to 

inflow and outflow were included in the problem formulation. Considering both ramp-effect 

constraints and the linear model constraints in terms of 𝑄𝑢𝑝
(𝑡𝑛,𝑥𝑘)

 and 𝑄𝑑𝑜𝑤𝑛
(𝑡𝑛,𝑥𝑘)

, the fuel-efficient 

traffic control problem was formulated as follows: 

 (36) 

where  𝐴𝑚𝑜𝑑𝑒𝑙 and 𝑏𝑚𝑜𝑑𝑒𝑙 represent the parameter matrix and vector derived from the linear 

model constraints in Equations (25) through (32). The unknown variable set, 

 (37) 

includes traffic inflow and outflow at the time instant ( 𝑡𝑛) for all segments. 

By solving the above problem in the form of the CQOP, the researchers found the optimized 

traffic inflow and outflow variables for each segment during [𝑡𝑛, 𝑡𝑛+1]. From the determined 

𝑄𝑢𝑝
(𝑡𝑛,𝑥𝑘)

 and 𝑄𝑑𝑜𝑤𝑛
(𝑡𝑛,𝑥𝑘)

 for 𝑘 = 0, … , 𝑘𝑚, the desired vehicle density for the next time interval 

could then be obtained from the following: 

 (38) 

which was based on the cell-transmission model (Daganzo 1994). To reach the desired vehicle 

density at the next time instant, 𝑡𝑛+1, the desired speed of each segment at the time interval 

shown as [𝑡𝑛, 𝑡𝑛+1] was determined by the following: 
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 (39) 

From Equation (39), optimized traffic inflow and outflow decision variables were then converted 

into the desired speed for segment k during  [𝑡𝑛, 𝑡𝑛+1], which was the control variable set 

expressed as follows: 

 (40) 
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DUAL DECOMPOSITION AND SUBGRADIENT METHOD 

Layout of Distributed Road Infrastructure Network 

The formulated problem described above required that data be collected from both on-ramp and 

off-ramp vehicle volumes for controlled segments and sent to a central processor. Instead of 

solving the traffic control problem in a central processor, which requires communication with 

each volume sensor, a distributed traffic control network was proposed.  

The traffic control network, equipped with sensing, computation, traffic information 

transmission, and display panels, is illustrated in Figure 3. 

 

Figure 3. Road infrastructure components and information flow 

The volume sensors count the number of vehicles entering and exiting segment K during time 

interval  [𝑡𝑛−1, 𝑡𝑛]. The computation module calculates instantaneous vehicle density at 𝑡𝑛 and 

handles it as the initial state for the next time interval,  [𝑡𝑛, 𝑡𝑛+1]. Based on obtained initial 

density, CQOPs are solved using QP individually. Temporary optimal solutions 𝑦𝑘
∗ are 

transmitted to adjacent RIs through a communication module. Subproblem formulation is then 

updated and CQOPs are resolved. This procedure was repeated until the ramp-effect constraints 

in Equation (36) were satisfied for all 𝑘 ∈ {0, … , 𝑘𝑚 − 1}. The converged solution for traffic 

inflow and outflow was transferred to the desired velocity using Equations (38) and (39). The 
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optimal speed of the dynamic limit signs at 𝑡𝑛 was updated to guide drivers during the time 

interval  [𝑡𝑛, 𝑡𝑛+1]. 

The RIs in the network compute desired speed for the corresponding segment in a distributed 

manner. In order to satisfy the ramp-effect constraints, each computation module exchanges 

information concerning optimized traffic flow only with neighboring segments. Compared to the 

centralized algorithm, which solves the entire problem in one computation module, decomposed 

subproblems at a small scale can be solved by individual computation modules. Furthermore, the 

distributed framework effectively prevents failure due to damage or breakdown of any RIs. 

Meanwhile, parallel computation of subproblems improves the entire system’s efficiency. 

Dual Decomposition 

The researchers first constructed the Lagrangian by introducing multipliers 𝜆𝑘 associated with 

ramp-effect constraints from Equation (36), as follows: 

 (41) 

where 𝑦𝑘 = [𝑄𝑑𝑜𝑤𝑛
(𝑡𝑛,𝑥𝑘)

, 𝑄𝑢𝑝
(𝑡𝑛,𝑥𝑘)

]
𝑇

. By sorting 𝑦𝑘 in Equation (41), the Lagrangian could be 

rewritten as follows: 

 (42) 

where 

 (43) 

and 

 (44) 
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Equation (42) is composed of 𝑘𝑚 subproblems, and each is formulated as a CQOP in the 

following form: 

 (45) 

where 𝐴𝑚𝑜𝑑𝑒𝑙
𝑘 𝑦𝑘 ≤ 𝑏𝑚𝑜𝑑𝑒𝑙

𝑘  represents the compact form of the dynamical constraints for 

subproblem k. By integrating the ramp-effect constraints in the objective function, the remaining 

constraints are the dynamical constraints in the formulation shown in Equation (45). Given that 

dynamical constraints of individual segments are only relevant to local decision variables (i.e., 

traffic inflow and outflow at starting and exiting points), every subproblem is independent of 

each other. Through the above transformation, the original optimization problem was 

decomposed into a set of subproblems. Thus, an optimal solution for each subproblem could be 

obtained individually. 

Subgradient Method 

The subgradient method is an iterative procedure used to gradually approach the optimal solution 

by finding the ascent direction for the dual problem. Given Lagrangian multipliers 𝜆𝑘(𝑗) at 

iteration 𝑗, the subgradient at this point is denoted as follows: 

 (46) 

The Lagrangian multiplier is updated by the following: 

 (47) 

where  𝛼𝑘(𝑗) is the user-specified step size that determines the convergence speed. Adjusting the 

step size during the coordination was challenging. On the one hand, an overly weighted step size 

leads to divergent results. On the other hand, too small of a step size slows the convergence 

speed in real-time application.  

The optimal solution was to update by solving Equation (45). The procedure was repeated until 

 𝜆𝑘(𝑗 + 1) = 𝜆𝑘(𝑗). Practically, the stopping criterion for convergence was set as |𝜆𝑘(𝑗 + 1) −
𝜆𝑘(𝑗)| < 𝜀𝜆, where 𝜀𝜆 was a user-specified threshold. Pseudo code for the iterative procedure is 

provided in the algorithm in Protocol 1.  
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Protocol 1. Dual Decomposition and Subgradient Method for the Distributed Traffic Control 

Problem 

Initialization: For subproblem 𝑘, 𝜆𝑘(0) = 0, 𝜆𝑘(1) = 𝑖𝑛𝑓, 𝑗 = 0 

while |𝜆𝑘(𝑗 + 1) − 𝜆𝑘(𝑗)| < 𝜀𝜆 do: 

j = j + 1. 

Solve CQOP in Equation (45) to obtain𝑦𝑘(𝑗) = [𝑄𝑑𝑜𝑤𝑛
(𝑡𝑛,𝑥𝑘)

, 𝑄𝑢𝑝
(𝑡𝑛,𝑥𝑘)

]. 

Calculate subgradient via Equation (46). 

Update Lagrangian multipliers via Equation (47). 

end 

In comparison to the centralized algorithm, optimal solutions at iteration j were exchanged with 

neighboring RIs to update  𝜆𝑘(𝑗 + 1). The distributed algorithm did not rely on global 

information, which depends on a fully connected RI network. Hence, the distributed method was 

more efficient and easier to implement than the centralized method. Moreover, each subproblem 

could be solved in parallel, which reduced the overall calculation time. 
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SIMULATION EXPERIMENTS 

Real-World Scenario and Vissim Setup 

This chapter describes the implementation of the formulated CQOP to minimize fuel 

consumption of a 4.6 mile (7.42 km) long spatial domain of I-235 from 50th Street to Exit 5B, 

which is one of the busiest freeways in West Des Moines, Iowa. The existing Iowa Department 

of Transportation (DOT) Wavetronix sensors, which are used to capture traffic data, cover the 

highway network of West Des Moines and Des Moines. The collected aggregated data were 

obtained through an online data portal maintained by TransCore.  

The weekday data for the peak morning traffic hours (7:00 am to 9:00 am) from May 1 to 

September 30, 2015 were used in this work. Based on the Greenshields model, linear regression 

was used to fit the speed-density line illustrated in Figure 4, where one example fitting line for 

the highway section from Valley West Drive northbound (NB) to Exit 2 is shown. 

 

Figure 4. Speed-density line fitted through linear regression for Valley West Drive NB to 

Exit 2 on I-235 

The corresponding parameters of the fundamental diagram were calculated graphically. By 

making the speed equal to zero, jam density 𝜌𝑗
𝑘 could be derived accordingly. Similarly, the free 

flow speed, 𝑣𝑓
𝑘, was obtained by assuming the density to be zero. 

The proposed traffic control strategy, by solving the formulated CQOP, was originally 

programmed in MATLAB. To build the connection between the control program and the Vissim 

simulation, the researchers generated a COM interface. The COM interface was designed to 

access all network object attributes and realize the user-defined control algorithms (PTV AG 
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2014). Through the COM interface, most of the simulation parameters could be dynamically 

handled during programming (Lu et al. 2012, Tettamanti and Varga 2012). 

According to the ramp location, the experimental highway section is divided into 10 segments. 

For example, Segment 4 is shown in Figure 5. 

 
©2016 Google 

Figure 5. Segment 4: I-235 from Valley West Drive NB to Exit 2 

The arrows in Figure 5 point to the locations of the volume sensors. The two blue elliptical 

regions at each end of the segment show the entry and exit locations for on-ramp and off-ramp 

vehicles, while the dynamic speed limit sign for 65 mph is shown located at the beginning of the 

segment on the left. 

Four sensors were installed at the starting point of Segment 4, each recording traffic volume 

entering Segment 4 for the corresponding lane. An additional four volume sensors were installed 

at the ending point of Segment 4 to collect the traffic volume leaving the segment. The volume 

records returned to zero every 120 seconds.  

The dynamic speed limit signs were located in accordance with the physical characteristics of 

each highway segment. For example, the sign at the starting point of Segment 4 is located right 

after the on-ramp of I-235 eastbound (EB) at Valley West Drive NB, as shown in Figure 5. Each 

highway segment had only one speed limit sign, and its location overlapped with the starting 

point of the segment, which could be right after the on-ramp or off-ramp. Descriptions of the 

highway segments are shown in Table 1.
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Table 1. Raw observation data for the highway segments 

Segment 

Order 

Segment Description 

Raw Observed Data 

Location Type 

Length 

km miles Volume (vph) 

1 I-235 EB at 50nd St NB Starting point   4,500 5,000 5,500 6,000 

2 Segment 1 Main 0.72 0.45 4,500 5,000 5,500 6,000 

3 Exit 1B Off-ramp   1,215 1,350 1,485 1,620 

4 Segment 2 Main 0.75 0.47 3,285 3,650 4,015 4,380 

5 I-235 EB at Valley West Dr SB On-ramp   452 452 452 452 

6 Segment 3 Main 0.33 0.21 3,737 4,102 4,467 4,832 

8 I-235 EB at Valley West Dr NB On-ramp   660 660 660 660 

7 Segment 4 Main 0.50 0.31 4,397 4,762 5,127 5,492 

9 Exit 2 Off-ramp   2,111 2,286 2,461 2,633 

10 Segment 5 Main 0.99 0.62 2,286 2,476 2,666 2,859 

11 I-235 EB at 22nd St On-ramp   744 744 744 744 

12 Segment 6 Main 0.66 0.41 3,030 3,220 3,410 3,603 

13 Exit 3 Off-ramp   939 1,000 1,057 1,117 

14 Segment 7 Main 0.55 0.34 2,091 2,222 2,353 2,486 

15 I-235 EB at 8th St Loop On-ramp   408 408 408 408 

16 Segment 8 Main 0.38 0.24 2,499 2,603 2,761 2,894 

17 Exit 4 Off-ramp   350 341 386 405 

18 Segment 9 Main 1.07 0.66 2,149 2,262 2,375 2,489 

19 I-235 EB at 63rd St On-ramp   260 260 260 260 

20 Segment 10 Main 1.47 0.91 2,409 2,522 2,635 2,749 

21 I-235 EB at 42nd St Off-ramp   554 580 606 632 

 



25 

Based on the method proposed by Shaw and Noyce (2014), the traffic volume of this study’s 

corridor was balanced. The researchers provided the raw observation volume in Table 1 as well. 

Ramp length was not considered in the simulation scenarios and therefore is not shown in Table 

1. 

Vissim has two car-following models: Wiedemann 74 for urban traffic and Wiedemann 99 for 

freeway traffic. The Wiedemann 99 car-following model for freeway traffic was used in this 

study.  

Driver behavior parameters were calibrated before simulation. The standstill distance (CC0), 

headway time (CC1), and following variation distance (CC2) parameters were found to have 

significant influences on traffic capacity in calibration. The calibrated CC0 was 3.05 meters 

(10.01 ft), CC1 was 1.45 seconds, and CC2 was 7.41 meters (24.31 ft). Additional details about 

the calibration can be found in Dong et al. (2015). 

In the following simulation scenarios, real-time control to minimize fuel consumption was 

achieved by the following procedures. First, the traffic volume of each segment during time 

interval [𝑡𝑛−1, 𝑡𝑛] was collected by volume sensors installed before and after each entry or exit 

point where the vehicles were guided into or were leaving the main highway section. Second, 

desired vehicle density at tn was obtained via Equation (38), which was assumed to be constant 

during [𝑡𝑛, 𝑡𝑛+1]. Third, based on the current density information at 𝑡𝑛, CQOP formulated as 

Equation (36) was solved using quadratic programming so that optimized inflow and outflow 

could be determined. Fourth, desired density for 𝑡𝑛+1 was calculated through Equation (38). In 

the last step, the desired speed during  [𝑡𝑛−1, 𝑡𝑛] was obtained using Equation (39) and displayed 

𝑣𝑑(𝑡𝑛, 𝑥𝑘) in the corresponding dynamic speed limit sign. The time interval to update the speed 

limit was 120 seconds.  

To verify the improvement of fuel efficiency, the fuel consumption amount with and without the 

control strategy was recorded and compared. The default speed limit of the experimental section 

was 120 km/h (75 mph) for the case without speed control. For each scenario, the simulation was 

designed to last 4,200 seconds. Since traffic status was not stable at the beginning period, only 

the simulation results from 600 to 4,200 seconds were used for data analysis.  

To demonstrate the feasibility of the proposed control strategy under heavy traffic volume, four 

scenarios corresponding to different volume demands were considered, which included original 

traffic on I-235 and vehicles entering from I-35N and 50th Street N (i.e., Scenario 1: 4,500 

veh/h; Scenario 2: 5,000 veh/h; Scenario 3: 5,500 veh/h; and Scenario 4: 6,000 veh/h). 

Simulation results are discussed in the following section. 

Simulation Results 

As shown in Figure 4, a parallelogram region was determined by shifting the fitted speed-density 

line up and down. The speed could be slightly different from the theoretical result provided by 

linear regression in a neighboring region. Hence, to consider realistic application, optimal speed 
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values were rounded to the increment of 5 km/h (3 mph) and no less than 15 km/h (9 mph). 

Figures 6 through 9 demonstrate the density history with and without speed control for 

simulation Scenarios 1 through 4, respectively. 

 

Figure 6. Density history of Scenario 1 with a starting volume of 4,500 veh/h: speed limit 

signs controlled by the rounded optimal solution (left) and an uncontrolled case with a 

desired speed of 120 km/h (75 mph) (right) for each segment 

 

Figure 7. Density history of Scenario 2 with a starting volume of 5,000 veh/h: speed limit 

signs controlled by the rounded optimal solution (left) and an uncontrolled case with a 

desired speed of 120 km/h (75 mph) (right) for each segment 
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Figure 8. Density history of Scenario 3 with a starting volume of 5,500 veh/h: speed limit 

signs controlled by the rounded optimal solution (left) and an uncontrolled case with a 

desired speed of 120 km/h (75 mph) (right) for each segment 

 

Figure 9. Density history of Scenario 4 with a starting volume of 6,000 veh/h: speed limit 

signs controlled by the rounded optimal solution (left) and an uncontrolled case with a 

desired speed of 120 km/h (75 mph) (right) for each segment 

The density history diagram demonstrates the average density reduction along the experimental 

highway section. Compared to the uncontrolled strategy, the proposed control strategy led to 

lower average vehicle density, especially for Segment 9, which generated a high density value at 

the end of the simulation period. By implementing the proposed algorithm, severe congestion 

was avoided for that segment. Figures 7 through 9 demonstrate the improved performance of 

congestion alleviation in scenarios with relatively high demands (≥ 5,000 veh/h). 

The fuel consumption for all vehicles traveling along the experimental highway section during a 

one-hour interval is provided in Table 2. 
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Table 2. Total fuel consumption in simulation scenarios with and without control 

Scenario 

With  

Control (kg) 

With  

Control 

(Gallons) 

Without  

Control (kg) 

Without  

Control 

(Gallons) 

Reduction  

Percentage 

Scenario 1: 

4,500 veh/h 

534.9  141.3 565.3  149.3 5.37% 

563.5  148.9 583.3  154.1 3.52% 

557.0  147.1 564.4  149.1 1.32% 

556.5  147.0 571.9  151.1 2.69% 

564.9  149.2 594.1  156.9 5.17% 

    Average: 3.61% 

Scenario 2: 

5,000 veh/h 

579.2  153.0 622.6  164.5 6.97% 

543.9  143.7 625.7  165.3 13.06% 

541.7  143.1 618.8  163.5 12.46% 

565.4  149.4 625.3  165.2 9.57% 

561.6  148.4 605.9  160.1 7.31% 

    Average: 9.87% 

Scenario 3: 

5,500 veh/h 

542.9  143.4 648.0  171.2 16.22% 

542.2  143.2 650.3  171.8 16.62% 

552.8  146.0 640.3  169.1 13.66% 

557.1  147.2 649.3  171.5 14.20% 

553.1  146.1 645.1  170.4 14.26% 

    Average: 14.99% 

Scenario 4: 

6,000 veh/h 

553.5  146.2 652.9  172.4 15.22% 

547.1  144.5 648.0  171.2 15.57% 

538.6  142.3 641.6  169.5 16.05% 

554.1  146.4 652.8  172.5 15.12% 

554.5  146.5 645.2  170.4 14.06% 

    Average: 15.20% 

 

In comparison to the case without control, the researchers’ speed control strategy significantly 

reduced the fuel consumption amount on the highway segment. Meanwhile, the optimal solution 

could be obtained within an average of 1.8 seconds using MATLAB installed on a standard 

desktop computer with a 3.50 GHz processor and 16 GB RAM. The high computational 

performance indicated the capability for real-time implementation. Therefore, the proposed 

method was verified to be applicable to a range of large-scale, real-world traffic control 

scenarios. 

The researchers selected five different seed parameters (without control and for the four different 

scenarios) to initialize five random number generators in Vissim. The different seed settings 

allowed them to simulate stochastic variations of vehicles entering the highway segment at the 

origin location. Five sets of comparison results are shown in Table 3 for Scenarios 1 through 4.  
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Table 3. T-test results in simulation scenarios with and without control 

Scenario (with control - without control) t-test Reduction percentage t-test 

Scenario 1: 

4,500 veh/h 

p-value = 0.0312 

95% CI: (-38.50718, -2.37282) 

 

Scenario 2: 

5,000 veh/h 

p-value = 0.0002355 

95% CI: (-80.60807, -41.99193) 

Scenario 1 - 2: 

p-value = 0.005857 

95% CI: (-0.11660199, -0.03054235) 

Scenario 3: 

5,500 veh/h 

p-value = 4.612e-08 

95% CI: (-105.33765, -88.62235) 

Scenario 2 - 3: 

p-value = 0.009428 

95% CI: (-0.10927944, -0.02296164) 

Scenario 4: 

6,000 veh/h 

p-value = 1.89e-08 

95% CI: (-107.36563, -89.71437) 

Scenario 3 - 4: 

p-value = 0.7789 

95% CI: (-0.02570897, 0.02016403) 

CI = confidence interval 

The researchers did a t-test for each scenario to statistically examine the performance of the 

proposed optimal control strategy. The p-value and 95% confidence interval (CI) are shown in 

Table 3. The t-test samples show fuel consumption amounts from five repeated simulations with 

the different seed parameters. 

The t-test for the difference between the controlled and uncontrolled cases (second column in 

Table 3) showed that the p-value decreased when the demanding traffic volume increased. This 

decreasing trend demonstrates further fuel consumption reduction when compared to the 

uncontrolled case. Therefore, the proposed control strategy was more effective when applied in 

severely congested scenarios. Furthermore, the negative value of CI demonstrated the 

effectiveness of the proposed control strategy (i.e., fuel consumption is always reduced). 

The t-test for reduction percentage (third column in Table 3) showed a significantly increasing p-

value. The p-values of Scenarios 3 and 4 are greater than 0.05, which indicate the acceptance of 

the null hypothesis. Specifically, fuel consumption reduction converged to a stable state, which 

implies that no further reduction could have been achieved if the demanding volume continued to 

increase.  

It was found that a lower reduction percentage value would likely be generated in Scenario 4 

than in Scenario 3, according to the positive upper bound of the CI. However, a stable reduction 

percentage could have been achieved for scenarios with a demanding volume between Scenarios 

3 and 4. 
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CONCLUSIONS 

The researchers propose that an efficient distributed optimization method would minimize fuel 

consumption of the traffic flow modeled by the Lighthill-Whitham-Richard partial differential 

equation. This explicit solution to the Cauchy problem was based on the Lax-Hopf formula and 

Greenshields fundamental diagram. Linear model constraints to satisfy the initial and boundary 

conditions were considered in the Barron-Jensen/Frankowska solution.  

After modeling the performance index as a quadratic function, the real-time, fuel-efficient traffic 

control problem was formulated as a convex quadratic optimization problem. The original CQOP 

(in a dual sense) was decomposed by introducing associated Lagrangian multipliers. Dual-

decomposed subproblems were also formulated as CQOPs and could be iteratively solved 

through the subgradient method.  

Simulation results demonstrated reduced fuel consumption and alleviated traffic congestion. The 

feasibility of the proposed optimization method was verified through the Vissim simulation tool, 

which considered different traffic volumes and random seed parameters. 

Implementation Readiness 

The proposed real-time highway control strategy can be implemented on highway sections using 

dynamic speed limit signs. The researchers plan to extend the one-dimensional control strategy 

to a highway network control strategy in the future.  

The objective can be not only fuel consumption minimization, but also travel time minimization, 

throughput maximization, or multiple objectives. Moreover, the researchers expect to use hybrid 

highway infrastructures to design even more efficient control strategies, such as dynamic speed 

limit signs, ramp meters, and highway information signs.   
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