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EXECUTIVE SUMMARY 

A large number of reinforced concrete (RC) bridges located in the US are at least 50 years old 

and during their service life are exposed to environmental stressors, operational stressors, and 

extreme events. Among various sources of deterioration, chloride penetration has major 

degrading effects on the durability of structures and can potentially make them vulnerable to 

natural and manmade hazards. To predict the future structural condition of bridges and plan for 

necessary maintenance and repair actions, the first step is to understand chloride penetration into 

concrete and then to identify the most influential parameters.  

The current study models time-dependent chloride penetration using a comprehensive finite 

element (FE) model as well as an evolutionary cellular automaton (CA) framework. Through a 

sensitivity analysis, the contributions and effects of various environmental factors on the chloride 

profile are investigated in detail. Moreover, the variation of environmental parameters such as 

temperature, relative humidity, and precipitation due to the effects of climate change and their 

impact on the performance of bridges is investigated.  

Reports on the extent of deterioration due to site-specific stressors, however, greatly depend on 

the judgment of individual inspectors. Considering the fact that inspection reports are one of the 

main references in planning for future maintenance activities, it is critical to quantify the effects 

of the human judgment factor on the prediction of the condition state of deteriorating structures.  

Since the errors and deviations originating from this factor may affect the entire life-cycle 

performance and cost analyses, the current study presents a stochastic approach to systematically 

investigate the condition-based maintenance strategies under human judgment uncertainties. For 

this purpose, the thinking process of inspectors is modeled within a probabilistic framework 

using Brunswikian theory and a probabilistic mental model. A Markov decision process is then 

utilized to model the deterioration process considering a range of exposure conditions. The 

deterioration states of the structures under investigation are categorized into five ranks, and the 

corresponding transition matrices are determined based on an exponential hazard model. By 

introducing a set of inspection intervals and maintenance criteria, the operational life-cycle cost 

is estimated by taking into account various confidence levels for the inspection reports.  

Current bridge management systems predict the condition state of bridge elements primarily 

based on the extent of continuous structural deterioration. While the existing systems deliver a 

range of capabilities for the management of bridges under normal operational conditions, they 

lack the capability to take into account the consequences of sudden extreme events in a 

systematic way. Given the uncertainties involved in natural and manmade hazards in addition to 

the ones associated with environmental exposure conditions, there is a critical need to develop 

risk-based approaches that not only take into account the site-specific aging mechanisms and 

extreme events at the same time, but also accommodate the spatial and temporal randomness 

originating from these factors. Towards this goal, the current study introduces a risk-based life-

cycle cost analysis framework that can be implemented in the current bridge management 

systems used by transportation agencies.  
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To demonstrate the capabilities of this framework, a set of representative bridges exposed to 

environmental stressors and seismic hazard risks are investigated. The condition states of the 

bridges are predicted based on Markovian transition matrices that are generated for both aging 

mechanisms and seismic events.  
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Transportation agencies throughout the United States use various bridge management systems 

(BMS) to collect and process an array of bridge data for the purpose of predicting the future 

condition of existing bridges. The outcome is then used to plan appropriate management 

strategies for the expected service life of bridges. For this purpose, both preventive and 

corrective actions are essential because the traffic demand increases every year and the bridge 

components are exposed to the risk of failure due to deterioration processes (i.e., aging 

mechanisms) from one side and extreme events from the other side.  

To systematically investigate the most efficient maintenance efforts, various bridge authorities 

initiated the development of bridge management systems in the 1980s. The steady progress of 

these systems resulted in Pontis, which was introduced in the early 1990s with support from the 

Federal Highway Administration (FHWA). Pontis, which is now known as AASHTOWare 

Bridge Management software (BrM), is a BMS that performs a variety of functions, such as 

recording bridge inventory and inspection data, simulating condition states, suggesting possible 

actions, and developing preservation and rehabilitation policies. Additionally, it can provide a 

procedure for the allocation of resources for the improvement of multiple bridges in a network. 

The use of BrM in the United States, however, is still limited and does not go beyond how the 

component of “risk” is incorporated into the implemented decision-making algorithms.  

Penetration of aggressive agents is one of the main reasons of deterioration of reinforced 

concrete (RC) bridges due to aging mechanisms. Among various sources of aggressive agents, 

chloride ions have major degrading effects on the durability of bridges and can potentially make 

them vulnerable to natural and manmade hazards. The adverse impact of chloride penetration 

into bridge elements becomes more critical for bridges located in marine and tidal zones or in 

cold areas where bridges are subjected to deicing salts. To predict the future structural condition 

of these bridge elements and plan for necessary maintenance and repair actions, the first step is 

to model the time-dependent chloride penetration into concrete numerically and then to identify 

the most influential parameters.  

As a common feature, all bridge management systems attempt to predict the future condition of 

infrastructure components and plan for proper maintenance and rehabilitation strategies. This, 

however, cannot be achieved without a thorough investigation of a large number of contributing 

factors, most of which are not deterministic and contain uncertainties. To include various sources 

of uncertainty, Moving Ahead for Progress in the 21st Century Act (MAP-21) requires US 

transportation agencies to integrate “risk” into their existing asset management plans. Risk 

management is introduced as “a systematic approach to set the best course of action under 

uncertainty by identifying, assessing, understanding, acting on, and communicating risk issues” 

(Berg 2010). Risk management greatly helps transportation agencies anticipate the possible 

consequences of system failure and develop necessary strategies to maintain the system in an 

acceptable level of performance during both normal and extreme conditions. Among various 

sources, transportation agencies must especially consider the risks due to natural hazards, such as 
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earthquakes, hurricanes, and floods. This is to avoid potential disasters, which may occur “when 

an extreme geological, meteorological, or hydrological event exceeds the ability of a community 

to cope with that event” (Lindell and Prater 2003). 

1.2. Literature Review  

1.2.1. Modeling the Deterioration Process of Bridges 

Diffusion of aggressive ions such as chlorides in RC bridges is one of the major causes of 

deterioration in these structures. The chloride penetration normally results in corrosion initiation 

and propagation. In the initiation stage, surface chloride ions diffuse through the concrete 

towards the steel rebars. In the second stage, however, the chlorides accumulated at the rebars 

exceed a critical level, in which the protective film around the rebars is destroyed and 

voluminous rust material with less strength compared to steel is generated. Among all the models 

representing the ingress of chloride ions into concrete, the models that include the diffusion and 

convection terms are the dominant ones. Such models are also capable of taking into account the 

effects of both internal (e.g., concrete properties and diffusion characteristic) and external (e.g., 

ambient temperature and relative humidity) parameters (Alipour et al. 2011 and 2013). 

There are a number of studies in the literature that attempt to capture chloride penetration and its 

impact either numerically or experimentally. Saetta et al. (1993) was one of the first studies that 

modeled the diffusion of chloride ions in one-dimensional unsaturated concrete considering a 

range of material and environmental parameters. Xi and Bazant (1999) included binding capacity 

and chloride diffusivity in a model proposed for the study of chloride penetration in saturated 

concrete. Martin-Perez et al. (2001) used the finite difference approach and studied the chloride 

binding effect on chloride profiles. Kong et al. (2002) used Xi and Bazant’s (1999) model to 

conduct a reliability analysis on saturated concrete to investigate the influence of water-to-

cement ratio and curing time. Ababneh et al. (2003) modeled chloride diffusion in unsaturated 

concrete considering both diffusion and convention mechanisms. Han (2007) considered the 

effect of chloride binding and evaporable water on the diffusion coefficient using a finite element 

(FE) method. Val and Trapper (2008) used a one-dimensional model for chloride ingress, 

diffusion, and convection into concrete. Bertolini (2008) examined both carbonation and chloride 

diffusion in a study of concrete corrosion. El Hassan et al. (2010) investigated the effect of 

environmental conditions, such as humidity and temperature, on the degradation process. Shafei 

et al. (2012) proposed a three-dimensional finite element model for chloride penetration and 

estimated the chloride content by solving four nonlinear time-dependent mechanisms 

simultaneously. Shafei et al. (2013) and Shafei and Alipour (2015) investigated the uncertainties 

involved in the corrosion process using large-scale stochastic fields. 

There are several internal and external parameters that have an impact on the chloride 

penetration process. Concrete properties and diffusion characteristic are examples of internal 

parameters, and ambient temperature and relative humidity are known as external parameters. It 

is known that the external parameters fluctuate due to the change of season and the geographic 

location of a structure. However, climate change has a direct effect on the average trends of 

external parameters by changing the temperature, relative humidity, and precipitation in the long 
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term. According to reports from the Intergovernmental Panel on Climate Change (IPCC), 

temperature has an increasing trend due to the emission of greenhouse gases. The IPCC defined 

emission scenarios according to population, economic condition, and technological change. The 

fifth IPCC assessment (IPCC 2007) particularly includes more comprehensive emission 

scenarios compared to the fourth IPCC assessment (IPCC 2014). The emission scenarios in the 

fifth assessment are expressed by representative concentration pathways (RCPs). Overall, the 

RCP scenarios are similar to the ones in the fourth assessment. For example, RCP 8.5 is broadly 

comparable to the A2/A1F1 scenario, RCP 6.0 to B2, and RCP 4.5 to B1. However, there is no 

equivalent scenario for RCP 2.6.  

Incorporating the climate scenarios in the chloride penetration model will help decision makers 

plan for proper maintenance strategies. There are some studies around the world that have 

investigated the impact of climate change on structural behavior and response. Yoon et al. (2007) 

evaluated the effect of CO2 concentration on the carbonation of concrete under the IS92a 

emission scenario in Korea. Castro-Borges and Mendoza-Rangel (2010) captured historical data 

(1961 to 2008) on temperature, relative humidity, and precipitation in Yucatan, Mexico, and 

studied the chloride profile behavior under climate change. Stewart et al. (2011) investigated the 

deterioration of structures under three scenarios, A1F1, A1B, and 550 ppm, in the Australian 

cities of Sydney and Darwin. Stewart et al. (2012) showed that carbonation-induced and 

chloride-induced damage risks may increase by 16% and 3% by 2100, respectively. The authors 

suggested that in regions where carbonation or penetration of chlorides govern durability, the 

concrete cover should be increased by up to 10 mm in the design stage to minimize the effect of 

climate change. Bastidas-Arteaga and Stewart (2015) studied the impact of climate change on the 

deterioration of structures in France. They considered two emission scenarios, high and medium, 

and concluded that the current concrete cover might not be satisfactory. Although the listed 

studies investigated the impact of climate change on the deterioration of structures, there is 

limited work available in the literature to investigate the effects of climate change on the 

durability of bridges in the US. In addition, most of the studies used simplified models of 

chloride penetration to predict the chloride content profile, which may lead to inaccurate results. 

Furthermore, the existing studies suggest some adaptations in the design stage of structures in 

order to prevent the aggressive impacts of climate change; however, these studies have not 

offered any solutions to update the current maintenance and repair strategies. 

1.2.2. Prediction of Deterioration Process of Bridges 

Markov chain model is the most common stochastic process used for predicting the future 

condition of deteriorating structures through the estimation of transition probabilities (Thompson 

et al. 2000, Wellalage et al. 2014, Bu et al. 2014). Jiang and Sinha (1989) applied the Markov 

chain technique to estimate the stochastic nature of bridge condition. Gopal and Majidzadeh 

(1991) recommended using a Markov decision process instead of bridge level of service for the 

management of highway bridges. Scherer and Glagola (1994) indicated that a Markov decision 

process is a powerful method for bridge management systems. Morcous et al. (2003) adopted 

Markov chain models and estimated the transition probabilities of the deterioration of bridges for 

different environmental conditions. Morcous (2006) showed that the Markov chain model’s 

assumptions are acceptable for predicting the future condition of bridge systems. Bocchini et al. 

(2013) also modeled the deterioration, maintenance actions, and failure of bridges using Markov 
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chains. It was concluded that the performance and accuracy of Markov models depend on the 

reliability of the predicted transition probabilities and the techniques used to estimate them 

(Wellalage et al. 2014). 

The transition probabilities are estimated through different methods, such as the percentage 

prediction method, the expected value method, Poisson regression, negative binomial regression, 

ordered probit model, and the random effects model (Mauch and Madanat 2001). Nevertheless, 

some of the stated methods are not suitable for modeling and managing deteriorating structures 

because they may require a large amount of data to model the stochastic process (Fu and Devaraj 

2008). There are several studies in the literature based on the proposed methods to calculate the 

transition probabilities. Morcous and Akhnoukh (2006) and Bu et al. (2014) modeled the 

deterioration of bridges by estimating the Markov transition probabilities through the regression 

model. Robelin and Madanat (2007) and Morcous (2011) used the percentage prediction method 

to generate the transition probability matrix for modeling the deterioration of structures. Delisle 

et al. (2004) and Agrawal et al. (2010) found a Weibull distribution suitable for predicting the 

deterioration of bridges.  

The methods listed above for calculating the transition probabilities suffer from several 

limitations, which may lead to the poor prediction of the future condition of bridges. Madanat 

and Ibrahim (1995) mentioned that the linear regression method cannot explicitly capture the 

effect of different explanatory variables and the presence of an underlying continuous 

deterioration is neglected. In addition, the linear regression method is significantly affected by 

any prior maintenance actions, records of which may not be readily available in databases. 

Moreover, Poisson regression and the ordered probit model have limiting assumptions, such as 

that the observed condition states are independent and identically distributed (2002). To address 

this issue, time-dependent deterioration forecasting models are introduced and the Markov 

transition probabilities are described by hazard models. Mishalani and Madanat (2002) 

determined the transition probabilities based on a Weibull hazard function. Similar to Mishalani 

and Madanat (2002), Tsuda et al. (2006) estimated the bridge deterioration process using a 

hazard model. Contrary to the Mishalani and Madanat (2002) model, the transition probabilities 

in Tsuda et al. (2006) are independent of the history of deterioration and only consider inspection 

intervals and hazard rates. Kobayashi et al. (2010) investigated multiple condition states and 

historical operation times to model the deterioration process using a multi-stage Weibull hazard 

model.  

1.3. Objectives and Report Organization 

The objective of this study was to improve current bridge management systems through the 

following: 

1. Incorporating a physics-based model to estimate the deterioration of bridge elements due to 

aging mechanisms. Two numerical frameworks, FE and cellular automaton (CA), were 

developed to express the ingress of aggressive ions in three-dimensional (3D) concrete 

elements. It was revealed that the accuracies of both frameworks are good; however, CA is 

more efficient in terms of computational cost. 



5 

2. Including the uncertainties involved in the environmental stressors. Environmental stressors 

and their variation have a direct impact on the deterioration process of bridges. It was shown 

that the variation of environmental parameters such as temperature, relative humidity, and 

precipitation due to climate change can accelerate the deterioration process. 

3. Quantifying the effect of the human judgment factor on the prediction of the condition state 

of deteriorating structures. For this purpose, the thinking process of inspectors was modeled 

within a probabilistic framework using Brunswikian theory and a probabilistic mental model. 

The most appropriate inspection and maintenance activities were identified by factoring 

human error into the decision-making process. 

4. Modeling the simultaneous effects of aging mechanisms and extreme events. It was 

illustrated that considering the adverse effects of extreme events can contribute to improving 

the life-cycle performance of bridges and cost prediction in the management of bridges. 

The outcomes of this study highlight how incorporating the physics-based model, uncertainties 

due to climate change, and human error as well as the occurrence and consequences of extreme 

events can contribute to improving the life-cycle performance of bridges and cost predictions. 

With these outcomes, stakeholders can better plan for necessary maintenance and repair actions, 

which can lead to an optimized bridge management system. This report is divided into four 

chapters. Chapter 2 describes the deterioration process of bridge elements due to aging 

mechanisms. The physics-based model as well as uncertainties regarding environmental stressors 

are explained in this chapter. Chapter 3 provides an explanation of how to predict the future 

condition of bridges using a stochastic process. The effects of both human judgement and 

extreme events are captured. Finally, Chapter 4 provides conclusions. 
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CHAPTER 2. CHLORIDE PENETRATION INTO CONCRETE BRIDGE ELEMENTS 

2.1. Chloride Penetration 

Corrosion of steel rebar is a limiting factor in the durability and performance of RC bridges. The 

corrosion process starts due to the ingress of chloride ions into the RC structural components. 

The transport of free chloride in concrete is through diffusion and convection. In the present 

study, both diffusion and convection are taken into account. 

𝜕𝐶𝑡𝑐

𝜕𝑡
= div (𝐷𝑐𝑙𝑤𝑒 ∇⃗⃗ (𝐶𝑓𝑐)) + div (𝐷ℎ𝑤𝑒𝐶𝑓𝑐 ∇⃗⃗  ⃗(ℎ)) (2-1) 

The first and second terms in Equation 2-1 determine the diffusion and convection terms, 

respectively. In Equation 2-1, 𝐶𝑡𝑐 is the total chloride ion concentration of concrete (kg/m3), t is 

the time (s), 𝐷𝑐𝑙 is the chloride diffusion coefficient (m2/s), 𝑤𝑒 is the evaporable water content 

(m3 pore solution/m3 concrete), 𝐶𝑓𝑐 is the concentration of free chloride ions (kg/m3 of pore 

solution), 𝐷ℎ is the humidity diffusion coefficient (m2/s), and ℎ is the pore relative humidity. The 

impact of environmental exposure is reflected in the diffusion coefficient by updating its value at 

each time step of the simulation as follows: 

𝐷𝑐𝑙 = 𝐷𝑐𝑙,𝑟𝑒𝑓𝑓1(𝑇)𝑓2(𝑡)𝑓3(ℎ) 𝑓4(𝐶𝑓)  (2-2) 

where 𝐷𝑐𝑙,𝑟𝑒𝑓 is a reference diffusion coefficient and 𝑓1(𝑇), 𝑓2(𝑡), 𝑓3(ℎ), and 𝑓4(𝑐𝑓) are 

modification factors for temperature, aging, humidity, and surface chloride, respectively. The 

temperature modification factor is applied to both the chloride and humidity diffusion 

coefficients. This factor is defined according to the Arrhenius law and consists of activation 

energy, E, and the difference between current temperature (T) and reference temperature (Tref). 

𝑓1(𝑇) = exp[𝐸/𝑅(1/𝑇𝑟𝑒𝑓 − 1/𝑇)]  (2-3) 

The aging modification factor represents the reduction of the diffusion coefficient due to 

progressive hydration over time and decreasing cement porosity.  

𝑓2(𝑡) = (𝑡𝑟𝑒𝑓/𝑡)
𝑟  (2-4) 

This factor is directly proportional to the ratio of the reference time (28 days) and the age of the 

concrete. In Equation 2-4, 𝑟 is the empirical age factor, assumed to be equal to 0.04.  

The existence of humidity and moisture is necessary for the diffusion process, since water is 

serving as a transport agent and a chemical reactant. The humidity modification factor is defined 

as follows: 
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𝑓3(ℎ) =
1

[1+[(1−ℎ)/(1−ℎ𝑐)]4]
  (2-5) 

where ℎ𝑐 is the critical humidity level at which 𝑓3(ℎ) equals the average of its maximum and 

minimum values. Finally, the effect of free chloride content can be expressed as follows: 

𝑓4(𝑐𝑓) = 1 − 𝑘(𝑐𝑓)
𝑛
  (2-6) 

where 𝑘 and 𝑛 are empirical parameters, equal to 8.4 and 0.5, respectively. 

Since the temperature and humidity vary within a three-dimensional concrete member, it is 

essential to find the nodal temperature and humidity at different points of the model. The 

governing partial differential equation for the heat flow can be written as follows: 

div(𝐾𝑡 𝑔𝑟𝑎𝑑(𝑇)) + 𝑞𝑡 = 𝜌𝑐𝑡
𝜕𝑇

𝜕𝑡
  (2-7) 

where 𝐾𝑡, 𝑞𝑡, 𝜌, and 𝑐𝑡 are the thermal conductivity of concrete, the rate of heat generation per 

unit volume, concrete density, and the specific heat of concrete, respectively.  

Moisture in concrete flows from regions where moisture is plentiful to where it is scarce. The 

moisture flux can be modeled by Fick’s second law. 

𝜕𝑤𝑒

𝜕𝑡
=

𝜕𝑤𝑒

𝜕ℎ
= div (𝐷ℎ ∇⃗⃗  ⃗(ℎ))  (2-8) 

where the moisture capacity (
𝜕𝑤𝑒

𝜕h
) is equal to the derivative of free water (𝑤𝑒) with respect to 

pore relative humidity (h). For a constant temperature, 𝑤𝑒 and h are related by an adsorption 

isotherm as follows: 

𝑤𝑒 =
𝐶𝐾𝑉𝑚ℎ

(1−𝑘ℎ)[1+(𝐶−1)𝐾ℎ]
  (2-9) 

where 𝑉𝑚 is the monolayer capacity, C is a constant value that represents the effect of 

temperature on the adsorption isotherm, and K is another constant value (Xi et al. 1994). Similar 

to the chloride diffusion coefficient, humidity, temperature, and aging factors modify the 

humidity diffusion coefficient. 

𝐷ℎ = 𝐷ℎ,𝑟𝑒𝑓𝑔1(ℎ)𝑔2(𝑇)𝑔3(𝑡) (2-10) 

𝑔1(ℎ) = 𝛼ℎ + 𝛽ℎ [1 − 2−10
𝛾ℎ(ℎ−1)

]  (2-11) 
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𝑔2(𝑇) = exp[𝐸/𝑅(1/𝑇𝑟𝑒𝑓 − 1/𝑇)]  (2-12) 

𝑔3(𝑡) = 𝜒 + (1 − 𝜒) (
28

𝑡
)
0.5

 (2-13) 

where 𝛼ℎ, 𝛽ℎ, and 𝛾ℎ are the empirical coefficients. In order to determine the profiles of chloride, 

humidity, and temperature over time, it is necessary to solve simultaneously the system of partial 

differential equations of 2-1, 2-7, and 2-8. To this end, numerical methods such as finite element 

and finite difference can be implemented. 

2.2. Influential Parameters 

According to previous studies, there are several external and internal parameters that affect 

chloride penetration into concrete. In the current report, three external parameters and one 

internal parameter are selected for further investigation. Temperature, humidity, and surface 

chloride are the external parameters that vary in different locations and seasons. For example, 

during the wintertime, deicing salts, which are frequently used on roads, introduce a major 

source of chloride ions to the surface of RC bridges. Among the values reported in the literature, 

the minimum and maximum of temperature and humidity directly depend on the location of 

structures. Martin-Perez et al. (2001) captured the annual fluctuations of temperature and 

humidity using a sinusoidal function. Chen and Mahadevan (2008) defined a similar function 

with a mean of 15°C and an amplitude of 10°C. Shafei et al. (2012) presented the mean and 

amplitude of temperature and humidity for the Los Angeles area with sinusoidal functions fitted 

to the historical data. To study the variation of temperature and humidity as two external 

parameters and their effects on chloride penetration, their seasonal variation is defined in the 

current study through a sinusoidal function. The following equations show the time-dependent 

changes of temperature and humidity: 

𝑇𝑒𝑥(𝑡) = 𝑇𝑒𝑥,𝑎𝑣𝑒 + 𝑎 sin (
2𝜋𝑡

365
)  (2-14) 

𝐻𝑒𝑥(𝑡) = 𝐻𝑒𝑥,𝑎𝑣𝑒 + 𝑏 sin (
𝜋𝑡

365
)  (2-15) 

In the current study, three different values are selected for the mean of temperature, 𝑇𝑒𝑥,𝑎𝑣𝑒, and 

the mean of humidity, 𝐻𝑒𝑥,𝑎𝑣𝑒. 𝑇𝑒𝑥,𝑎𝑣𝑒 is 261, 291, and 321 K, while 𝐻𝑒𝑥,𝑎𝑣𝑒 varies between 0.45 

and 0.85 in intervals of 0.20. The listed values represent different exposure conditions and are 

applied to the generated finite element models as boundary conditions. 

The third most important external parameter that has a direct impact on the chloride profile is 

surface chloride. The source of surface chloride can be either deicing salt in winter or seawater in 

coastal areas. Therefore, monitoring RC structures in regions with a harsh winter or in tidal 

zones becomes a critical issue for managing the existing infrastructure components. The surface 

chloride due to deicing salt can be represented by a step function with a maximum value during 

cold seasons and zero for the rest of year. There are some studies that capture the surface 
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chloride concentration. A comparison among them indicates that the RC structures in splash and 

tidal zones are exposed to a much higher chloride content than structures experiencing deicing 

chloride. To investigate the variation under different exposure conditions, three surface chloride 

contents of 1.5, 3.5, and 5.5 kg/m3 are considered in the current study. 

In addition to the external parameters, the chloride diffusion coefficient plays a significant role in 

chloride penetration. This parameter is sensitive to several factors, such as water-to-cement ratio, 

curing, concrete mixture (additive), and the age of the structure. A wide range of 𝐷𝐶𝑙 values, 

from 1×10-12 m2/s to 25×10-12 m2/s, is reported in the literature (Dhir et al. 1990, Funahashi 1990, 

Papadakis et al. 1996, Stewart and Rosowsky 1998, Bamforth 1999, Bentz 2003, Chen and 

Mahadevan 2008, Val and Trapper 2008). The value assumed for 𝐷𝐶𝑙  in the present work is 

6.7×10-12. A sensitivity analysis was also performed to investigate the impact of this parameter 

on the chloride profile over time. 

2.3. Computational Methodologies 

2.3.1. Finite Element Model 

To capture the effects of the main internal and external parameters, a three-dimensional finite 

element model is generated. As explained earlier, the four mechanisms of heat transfer, moisture 

transport, carbonation process, and chloride penetration are solved simultaneously at each time 

step. The obtained results are then used to update the model for the next time step. In the current 

study, the ANSYS program is used to model the chloride penetration into the RC structures. The 

elements of choice (Solid 70) have eight nodes with a single degree of freedom for temperature. 

The finite element models utilized for three exposure scenarios are presented in Figure 2-1.  
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(a) (b) 

 
(c) 

Figure 2-1. Chloride penetration after 60 years under three environmental exposure 

scenarios: (a) mean temperature 261 K and relative humidity 0.45, (b) mean temperature 

291 K and relative humidity 0.65, and (c) mean temperature 321 K and relative humidity 

0.85 

The concrete element has dimensions of 0.01 × 0.01 × 0.25 m (a typical bridge deck with a unit-

length cross section) and is exposed to a chloride concentration of 3.5 kg/m3 on the top surface. 

In this figure, the chloride diffusion coefficient is assumed to be equal to 6.7×10-12 m2/s. As can 

be seen in the figure, after 60 years of exposure, chloride ions reach 24% of the element’s length. 

The FE framework has the capability to define a series of physical environments to investigate 

the effect of multiple external stressors and provides an accurate prediction of the chloride 

profile for a concrete element.  

2.3.2. Cellular Automata Model 

A CA is a lattice-based method in which the evolution of the quantities assigned to each site of 

the lattice are governed by the laws of physics. In the CA framework, the system under 

consideration is discretized in space to form lattice sites, each of which are endowed with a finite 

number of states. Those states evolve during the course of CA simulations in discrete time steps 

according to the rule of automaton, which updates the states of a certain site at each time step 

based on the states of that site and its neighbors at the previous time step. The CA method has 

been successfully employed to model a number of physical phenomena in engineering materials 

and structures, such as recrystallization, corrosion, hydration, friction, and wear. One of the most 

interesting applications of CA is the simulation of the diffusion of aggressive agents in 

0 1.5 3.5 kg/m3



11 

microporous media. In this study, the CA method is adopted to investigate the diffusion of 

chloride ions in RC structures.  

The effectiveness of the CA simulations is greatly dependent on the proper description of the 

lattice sites’ neighborhoods, as well as the correct implementation of the rule of automaton. A 

lattice site’s neighborhood refers to a set of local sites, often called the local environment, which 

forms the basis for determining the behavior of an automaton. There are two widely used choices 

to define a local environment in a two-dimensional lattice: von Neuman and Moore. The former 

environment, shown in Figure 2-2a, consists of a site and the four neighborhood sites nearest to 

it, while in the latter environment, shown in Figure 2-2b, the next-nearest neighbor sites are also 

included.  

  
(a) (b) 

Figure 2-2. Two ways to define a local environment in a two-dimensional lattice: (a) von 

Neuman and (b) Moore 

In these figures, the state of the central cell (green circle) depends on the rule of automaton that 

involves the neighborhood sites (red circles). The von Neuman environment has been previously 

used in the literature (Biondini et al. 2004 and 2008). However, it is assumed that the Moore 

environment yields more accurate results because the additional next-nearest neighborhood sites 

also contribute to the evolution of the central site, in contrast to the von Neuman environment, in 

which only the nearest neighborhood sites are involved. To the best of our knowledge, this is the 

first study that aims at investigating the effect of the local environment (i.e., von Neuman and 

Moore) on the diffusion of chloride ions in the CA framework. 

Once the proper local environment is chosen, the state of each lattice site, i.e., chloride 

concentration, is updated based on the rule of automaton as follows: 

𝐶𝑖(𝑡 + ∆𝑡) = ∅𝑖𝐶𝑖(𝑡) + ∑ ∅𝑗𝐶𝑗(𝑡)
𝑛
𝑗=1   (2-16) 

where Ci(t) is the concentration of chloride in lattice i measured at time t. The dummy index j 

refers to the neighborhood lattice sites in the local environment. Thus, n is equivalent to 4 and 8 

for the von Neuman and Moore environments, respectively. The coefficients Øi and Øj are the so-

called order parameters, which vary in space and time to define the local state of the system. To 
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meet the restrictions due to the conservation of mass principle, the values of the order parameters 

must satisfy the normality role: 

∅𝑖 + ∑ ∅𝑗
𝑛
𝑗=1 = 1  (2-17) 

It should be noted that in isotropic media like RC structures, the order parameters of the 

neighborhood cells must be equivalent to each other to avoid unrealistic directionality effects. In 

this study, a constant value of 0.5 is used for the order parameter of the central cell (Øi), as 

recommended previously by Biodini et al. (2004 and 2008). To regulate the process according to 

the constant diffusion coefficient (D), it is vital to discretize space and time such that the cell 

dimensions (Δx) and time steps (Δt) satisfy Fick’s second law, which assumes a linear 

relationship between mass flux and diffusion gradient. By rearranging the rule of automaton 

based on the conservation of mass principle, and recalling the differential equations of Fick’s 

second law, it can be easily shown that such regulation yields the following: 

𝐷 =
1−∅𝑖

4

∆𝑥2

∆𝑡
  (2-18) 

The chloride profile calculated by the CA framework is presented for a typical rectangular cross 

section of a bridge pier stem subjected to a NaCl aqueous solution around its perimeter. The 

modeled bridge pier has a width and height of 1.0 and 1.5 m, respectively. The CA grid size is 1 

cm, and a von Neuman local environment is assumed. The two-dimensional periodic boundary 

conditions are applied to the pier’s cross section. The diffusion coefficient is assumed to be 

6.7×10-12 m2/s, which falls in the range observed experimentally for RC structures exposed to 

harsh aqueous environments (Hoffman and Weyers 1994, Bentz 2003). This cross section is 

subjected to a diffusive attack from an aggressive environment along the whole external 

perimeter with a constant surface chloride concentration of 3.5 kg/m3. The diffusion process in 

the pier’s cross section for a total life-cycle of 60 years is described by the maps of chloride 

concentrations shown in Figure 2-3.  
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(a) (b) (c) (d) 

 

Figure 2-3. Maps of chloride concentrations after (a) 15, (b) 30, (c) 45, and (d) 60 years 

from the time of diffusion initiation 

It can be seen that as the pier ages, the surface chloride diffuses from the perimeter towards the 

middle of the section. Interestingly, even at the age of 15 years, there is a considerable 

concentration of chloride that could pass the cover and reach the reinforcing bars. 

Both the FE and CA numerical frameworks are capable of modeling the ingress of aggressive 

agents into the concrete elements. Although FE is one of the most robust computational 

techniques in the literature, it needs more computational time compared to the CA framework. 

Therefore, it is suggested that for probabilistic/reliability analyses with several sets of 

simulations, the CA framework should be implemented; otherwise, both the CA and FE 

frameworks provide good accuracy and have good agreement with the experimental/field results. 

2.4. Results and Discussion 

Based on the simulations conducted in this study, it is found that temperature has a direct 

influence on chloride diffusion. This is because any increase in temperature accelerates the 

movement of chloride ions. Figure 2-4 shows the impact of temperature on chloride content at 

the rebar depth (5.0 cm). The relative humidity and surface chloride content are assumed to be 

equal to 0.65 and 3.5 kg/m3, respectively. 
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Figure 2-4. Chloride content profile under three different mean temperatures 

According to this figure, while the chloride content after 60 years is 0.23 kg/m3 at 261 K, it 

increases to 1.80 kg/m3 at 291 K. If the temperature increases another 30 K (from 291 to 321 K), 

the chloride content will experience an approximately 50% increase again.  

The influence of temperature on the chloride diffusion coefficient is shown in Figure 2-5. The 

relative humidity and surface chloride content are assumed to be equal to 0.65 and 3.5 kg/m3, 

respectively. There is a major difference (up to three orders of magnitudes) among the 𝐷𝐶𝑙 values 

recorded under different temperatures. 

 

Figure 2-5. Fluctuations of DCl under three different mean temperatures 
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Similar to temperature, an increase in humidity leads to a higher chloride content in the concrete 

mainly because it facilitates the transport of chloride ions. The effects of humidity on chloride 

profile and 𝐷𝐶𝑙 are presented in Figures 2-6 and 2-7, respectively. In both figures, the mean 

temperature and surface chloride content are assumed to be equal to 291 K and 3.5 kg/m3, 

respectively. 

 

Figure 2-6. Chloride content profile as a function of relative humidity 

 

Figure 2-7. Fluctuations of DCl as a function of relative humidity 
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The observed trends are similar to the ones reported for the temperature effects. However, it 

must be noted that the variations due to temperature are much more significant than the ones due 

to humidity.  

To study the simultaneous effect of temperature and relative humidity on chloride penetration, 

three exposure conditions are introduced: one average condition (Exposure II) and two extreme 

conditions (Exposure I and III). In Exposure II, chloride ions penetrate under the reference 

temperature of 291 K and a relative humidity of 0.65. For Exposure I, both mean temperature 

and relative humidity are decreased to 261 K and 0.45, respectively. This exposure condition is 

expected to majorly slow down the chloride penetration. However, the change in chloride 

penetration under the simultaneous increase of mean temperature and relative humidity to 321 K 

and 0.85, respectively, is investigated as another extreme condition. Figure 2-8 clearly captures 

the extent of chloride penetration in each of the three exposure scenarios after 60 years.  
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(c) 

Figure 2-8. Chloride profile under Exposure I, II, and III 

It is clear that as the environmental conditions become harsher (i.e., Exposure III), chloride ions 

penetrate into the deeper parts of the RC structure. The extent of penetration is almost negligible 

in Exposure I compared to Exposure III.  

To quantify the impact of exposure condition, the profiles of chloride content at three different 

depths are plotted under Exposure I, II, and III (Figure 2-8). It can be seen in this figure that 

there is a major difference in the recorded chloride content among the three exposure conditions. 

While the chloride content is close to zero for Exposure I, it reaches 3 kg/m3 in Exposure III. The 

different values of chloride concentration at the level of the rebar lead to different corrosion 

initiation times. The corrosion initiates when the chloride concentration at the cover depth 

reaches the threshold chloride concentration. The value of the threshold chloride concentration 

has been reported in the literature. Assuming a threshold value of 2 kg/m3, the initiation time 

ranges from 2 to 50 years for Exposure II and III, respectively. The chloride content never 

reaches the threshold value in Exposure I. 

The third external parameter investigated in the current study is surface chloride. It is clear that a 

high chloride content at the surface of an RC structural component creates a major gradient of 

concentration, which leads to a higher chloride content at deeper depths. This further increases 

the chloride diffusion coefficient, which is influenced by the available free chloride ions. The 

impact of surface chloride content on the chloride diffusion coefficient is shown in Figure 2-9 for 

the three surface chloride contents of 1.5, 3.5, and 5.5 kg/m3.  
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Figure 2-9. Effect of surface chloride content on the chloride diffusion coefficient over time 

Figure 2-10 presents how the chloride diffusion coefficient plays a significant role in chloride 

penetration. 

 

Figure 2-10. Effect of chloride diffusion coefficient on the chloride content at the rebar 

level 
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2.5. Climate Change Impact 

2.5.1. Emission Scenarios 

The IPCC (2014) expressed greenhouse gas (GHG) emissions through four scenarios: RCP 8.5, 

RCP 6.0, RCP 4.5, and RCP 2.6, in which RCP 8.5 shows high GHG emissions, RCP 4.5 and 

RCP 6.0 are intermediate scenarios, and RCP 2.6 reflects the stringent mitigation scenario. The 

trends in temperature and sea level are forecasted for these scenarios. These emission scenarios 

correspond to the ones in IPCC (2007), except for RCP 2.6. In IPCC (2007), the scenarios are 

based on the development, economic, and technological pathways. For example, A1 shows rapid 

economic growth and the rapid introduction of efficient technologies as well as a global 

population that peaks at mid-century. Based on the alternatives for technological change, A1 is 

divided into A1F1, which relies on fossil fuels intensively; A1T, which supplies non-fossil fuel 

energy resources; and A1B, which is a balance of all energy sources. A2 shows a world with 

high population growth but slow technological and economic development. Finally, B2 

demonstrates intermediate population and economic growth. Table 2-1 summarizes the 

temperature variation under each of the scenarios. 

Table 2-1. Predicted temperature change for the 21st century based on the fourth and fifth 

IPCC assessments 

Scenario Mean (°C) Interval 

Fourth assessment (IPCC 2007) 2081-2100 

RCP 2.6 1.0 0.3-1.7 

RCP 4.5 1.8 1.1-2.6 

RCP 6.0 2.2 1.4-3.1 

RCP 8.5 3.7 2.6-4.8 

Fifth assessment (IPCC 2014) 2090-2099 

B1 1.8 1.1-2.9 

B2 2.4 1.4-3.8 

A1B 2.8 1.7-4.4 

A1T 2.4 1.4-3.8 

A1F1 4.0 2.4-6.4 

A2 3.4 2.0-5.4 

 

The average temperature and humidity in Equations 2-14 and 2-15 need to be increased at each 

time step based on the corresponding emission. For example, if the average temperature is 20°C, 

it is expected to reach 23.7°C in 2100. In this study, four RCP scenarios are taken into account. 

Therefore, in addition to sinusoidal functions that represent the annual variation in temperature, 

the increasing trend of the mean of temperature is considered. There is no information available 

in the IPCC reports for relative humidity. Brown and Degaetano (2013) found that relative 

humidity has an increasing trend throughout the central region of the US but generally decreases 

towards the east and west coasts. Gaffen and Ross (1999) also mentioned that relative humidity 

has an increasing trend, especially at nights in winter and spring over most of the nation, with the 

most striking increase in Alaska. According to Dai (2006), the change in relative humidity is 
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small compared with the mean value. Dai (2006) also proposed an increasing trend for relative 

humidity over the central and eastern US. In order to further quantify the trend in relative 

humidity, three main cities of the US Midwest are selected: Chicago, Illinois; Minneapolis, 

Minnesota; and Des Moines, Iowa. The relative humidity in these cities can be calculated using 

temperature and dew point data. The data are extracted from a weather website 

(https://www.wunderground.com/). Figures 2-11 and 2-12 show the trends in temperature and 

relative humidity in these cities, respectively. It can be seen that all the three cities show a mild 

increasing trend for temperature, which is compatible with IPCC predictions. As for relative 

humidity, if the outliers are neglected, a constant or mild decreasing trend can be seen in Figure 

2-12.  

 
(a) 

 
(b) 

 
(c) 

Figure 2-11. Historical temperature trends in (a) Chicago, (b) Minneapolis, and (c) Des 

Moines 
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(a) 

 
(b) 

 
(c) 

Figure 2-12. Historical trends of relative humidity in (a) Chicago, (b) Minneapolis, and (c) 

Des Moines 

In addition to temperature and relative humidity, an estimate of the surface chloride content is 

necessary to model chloride penetration. Generally, there are two sources of chloride ions: 

deicing salts and airborne seawater salts. In the current study, it is assumed that the surface 

chloride is due to deicing salts used in cold seasons. Overall, the consumption of deicing salts in 

the US has an increasing trend (Figure 2-13a), particularly in the northern regions (Findlay and 

Kelly 2011).  

  
(a) (b) 

Figure 2-13. Trend of the consumption of deicing salts in the (a) northern US and (b) Iowa 
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This trend can be explained by extreme weather events, which are believed to be a consequence 

of climate change. While hotter days are expected in some regions, which can lead to the 

extension of droughts, the colder days in other regions lead to heavier precipitation, particularly 

in winter. Iowa data verifies that the use of deicing salt has increased. As shown in Figure 2-13 

(b), the application of deicing salt in Iowa increases from 627 kilotons in 2010 to 810 kilotons in 

2017. Knowing the fact that the number of bridges as well as lane miles of roadway are almost 

the same during this time interval, it can be concluded that the higher mass of deicing salt used 

between 2010 to 2017 may be due to extreme weather. 

2.5.2. Climate Change Impact on Corrosion Initiation 

To investigate the impact of climate change on corrosion initiation, temperature, relative 

humidity, and surface chloride are defined as time-dependent variables in FE. The variations in 

these parameters are defined based on Table 2-2.  

Table 2-2. Variations in surface temperature, relative humidity, and surface chloride due 

to the impacts of climate change for three cities, Chicago, Minneapolis, and Des Moines, at 

the end of the 21st century 

City Temperature (°F) Relative humidity Surface chloride (kg/m3) 

RCP 2.6 

Chicago 51.0-52.0 0.664-0.666 4.00-4.20 

Minneapolis 48.0-49.0 0.648-0.651 4.50-4.70 

Des Moines 53.0-54.0 0.657-0.659 3.50-3.68 

RCP 4.5 

Chicago 51.0-52.8 0.664-0.669 4.00-4.40 

Minneapolis 48.0-49.8 0.648-0.653 4.50-4.95 

Des Moines 53.0-54.8 0.657-0.662 3.50-3.85 

RCP 6.0 

Chicago 51.0-53.2 0.664-0.671 4.00-4.60 

Minneapolis 48.0-50.2 0.648-0.658 4.50-5.18 

Des Moines 53.0-55.2 0.657-0.664 3.50-4.03 

RCP 8.5 

Chicago 51.0-54.7 0.664-0.674 4.00-4.80 

Minneapolis 48.0-51.7 0.648-0.658 4.50-5.40 

Des Moines 53.0-56.7 0.657-0.667 3.50-4.20 

 

Changes in the identified parameters influence the chloride and moisture diffusion process by 

varying the corresponding modification factors, 𝑓1(𝑇), 𝑓3(𝐻), 𝑔1(𝑇), 𝑔3(𝐻). Figure 2-14 

presents the total chloride concentration at the rebar surface over 100 years under four emission 

scenarios for cases where the temperature and relative humidity increase over time.  
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(a) 

 
(b) 

 
(c) 

Figure 2-14. Total chloride concentration at cover depth over time in (a) Chicago, (b) 

Minneapolis, and (c) Des Moines 
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As expected, total chloride has the highest concentration under RCP 8.5 and can reach on 

average 22% greater than the reference case in the absence of climate change. However, the 

concentration of chloride content under RCP 2.6 is 6% higher than the reference case. The 

chloride content is similar in the three selected cities after 100 years. For example under RCP 

8.5, it is equal to 5.39, 5.30, and 5.04 kg/m3 in Chicago, Minneapolis, and Des Moines, 

respectively.  

The profile of total chloride content can be used to evaluate the corrosion initiation time. When 

the chloride concentration at the rebar surface reaches the threshold chloride concentration, 

corrosion initiates. Val and Stewart (2003) suggested that the threshold chloride is normally 

distributed with a mean and coefficient of variation of 3.35 kg/m3 and 0.375, respectively. Shafei 

et al. (2012) selected a threshold value equal to 3.5 kg/m3, 1% of cement weight (350 kg/m3), 

which is the proposed interval in the literature. In the current study, the threshold value is 

assumed to be 3.5 kg/m3, and the corrosion initiation times are evaluated for four climate change 

scenarios. We calculated that the corrosion time decreases on average 13%, 22%, 29%, and 39% 

under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, respectively. As for the total chloride content 

after 100 years, as the emission scenarios become more aggressive, the effect of temperature and 

relative humidity variation becomes more noticeable. The concentration of total chloride 

increases 5%, 10%, 15%, and 22% under RCP 2.6, 4.5, 6.0, and 8.5, respectively, compared to 

the reference case.  

From the comparison of corrosion initiation time and total chloride concentration in Chicago, 

Minneapolis, and Des Moines, it was observed that corrosion initiates earlier in Chicago 

compared to the two other cities. The difference between the corrosion initiation time in 

Minneapolis and Des Moines is small, but it occurs earlier in Des Moines. The difference among 

the corrosion initiation times in these three cities can be explained by the temperature and 

surface chloride variations among these cities. For example, the temperature in Chicago is 1°C 

lower than in Des Moines while the surface chloride is 0.5 kg/m3 greater, which leads to faster 

initiation of corrosion in Chicago. However, the 3°C cooler temperature in Minneapolis 

compared to Des Moines causes the corrosion initiation period to become longer despite the fact 

that surface chloride is 1 kg/m3 greater in Minneapolis compared to Des Moines.  

To incorporate the impact of climate change in bridge management systems, the chloride 

penetration process needs to be evaluated by incorporating the environmental parameters under 

different climate change scenarios. The updated chloride profile should then be employed to 

develop a stochastic process that can predict the future condition state of bridge components 

depending on site-specific exposure conditions. This can be achieved by updating the traditional 

transition matrices. Decision makers can then utilize the revised transition matrices to estimate 

the future structural condition of a bridge at any desired time interval. The details of this 

procedure can be found in Khatami et al. (2016). In addition to the impact of climate change on 

the deterioration of bridges, the severe consequences of extreme events such as flooding should 

be considered when decision makers plan for maintenance and repair strategies. The flowchart in 

Figure 2-15 highlights the key steps needed for an improved bridge management system. The 

cost analysis included in the flowchart includes both direct and indirect costs. 
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Figure 2-15. Schematic representation of improved bridge management under climate 

change 
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CHAPTER 3. PREDICTION OF DETERIORATION IN CONCRETE BRIDGES 

3.1. Development of Transition Matrix 

Markov transition probabilities for the deterioration of transportation network components can 

be determined based on the condition states obtained from visual inspections normally performed 

in a periodic manner. The transition probability represents the uncertain transition of the 

condition state during two points in time (Tsuda et al. 2006). The observed condition state of a 

bridge at time 𝑇𝐴 (inspection time) is expressed by variable 𝑠(𝑇𝐴). The Markov transition 

probability, 𝑝𝑖𝑗, provides the probability that the condition state at future time 𝑇𝐵 becomes 

𝑠(𝑇𝐵) = 𝑗 given condition state 𝑠(𝑇𝐴) = 𝑖 observed at time 𝑇𝐴 (Equation 3-1).  

𝑃[s(𝑇𝐵) = j׀s(𝑇𝐴) = i] = 𝑝𝑖𝑗   (3-1) 

Since it is assumed that the condition state of a deteriorating structure cannot be improved 

without any repair or maintenance between 𝑇𝐴 and 𝑇𝐵, the transition matrix will be an upper 

triangular matrix. The highest level of deterioration (failure) is expressed by condition state F, 

which is recognized as an absorbing state in the Markov chain. The probability of transition out 

of each state is defined by a hazard function, which shows the instantaneous risk at which a 

component will be transitioning from its current state to a worse one. For example, the 

probability of remaining in condition state i at a subsequent time point measured from time point 

𝑂𝐴 by more than 𝑧𝑖 is defined as follows: 

𝐹𝑖̃ (𝑂𝐴 + 𝑧𝑖|𝜑𝑖 ≥ 𝑂𝐴) =
𝑃𝑟𝑜𝑏(𝜑𝑖≥𝑂𝐴+𝑧𝑖)

𝑃𝑟𝑜𝑏(𝜑𝑖≥𝑂𝐴)
=

𝐹𝑖̃(𝑂𝐴+𝑧𝑖)

𝐹𝑖̃(𝑂𝐴)
  (3-2) 

Using the definition of 𝐹𝑖̃(𝑥) for the exponential function, Equation 3-2 becomes the following: 

𝐹𝑖̃(𝑦𝐴+𝑧𝑖)

𝐹𝑖̃(𝑦𝐴)
=

exp (−𝜃𝑖(𝑦𝐴+𝑧𝑖))

exp (−𝜃𝑖𝑦𝐴)
= exp(−𝜃𝑖𝑧𝑖)  (3-3) 

Therefore, the probability that the same condition state will be observed by a subsequent 

inspection time, 𝑂𝐴 +q, is exp(−𝜃𝑖𝑞). 

The Markov transition probability, 𝑝𝑖𝑗, between any two consecutive inspections is calculated 

based on the conditional probabilities that can be estimated from the hazard functions. In order to 

make the conditional probability independent of the time period, Δ, the probability is divided by 

Δ to generate the hazard rate. This rate can be increasing, decreasing, or constant based on the 

selected hazard function and the value of its parameters. In the current study, the Markov 

transition probabilities are estimated using an exponential hazard model, which provides a 

constant hazard rate: 

𝑝𝑖𝑗 = ∑ ∏
𝜃𝑚

𝜃𝑚−𝜃𝑘

𝑘−1
𝑚=𝑖

𝑗
𝑘=𝑖 ∏

𝜃𝑚

𝜃𝑚−𝜃𝑘

𝑘−1
𝑚=𝑖 exp(−𝜃𝑘𝑞)  (3-4) 
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where 𝜃 is referred to as the hazard rate and q is the inspection interval. For the special cases 

of remaining in state i, 𝑝𝑖𝑖, degrading only one state from state i to i+1, 𝑝𝑖𝑖+1, and degrading 

from state i to state F, 𝑝𝑖𝐹, Equation 3-4 can be simplified to the following: 

𝑝𝑖𝑖 = exp(−𝜃𝑖𝑞) (3-5) 

𝑝𝑖𝑖+1 =
𝜃𝑖

𝜃𝑖−𝜃𝑖+1
{−exp  (−𝜃𝑖𝑞) + exp  (−𝜃𝑖+1𝑞)}  (3-6) 

𝑝𝑖𝐹 = 1 − ∑ 𝑝𝑖𝑗
𝐹−1
𝑗=𝑖  (𝑖 = 1,… , 𝐹 − 1)  (3-7) 

3.2. Prediction of Condition States 

Based on the inspection results, the state of deterioration and extent of damage to deteriorating 

structures can be determined. Without appropriate maintenance actions, the condition state 

continuously degrades, and the consequences of the deterioration processes become apparent 

from the spalls, splits, and cracks (Bu et al. 2014, Ranjith et al. 2013) or from the signs of 

corrosion, such as change of color and accumulation of aggressive agents (Saydam et al. 2013, 

Shafei et al. 2012). In the current study, five condition states are introduced based on the 

concentration of chloride ions at the rebar surface. The exposure to chloride ions can originate 

either from airborne sea salts or deicing salts used in wintertime. By utilizing a detailed transient 

analysis that can capture the uncertainties inherent in material properties and exposure conditions 

(Shafei et al. 2013), the profile of chloride ions is calculated for a comprehensive set of surface 

chloride contents, concrete durability levels, and rebar cover depths, as explained in Chapter 2.  

Based on the predicted chloride profile, the state of deterioration can be identified. Since it has 

been shown that there is a direct correlation between the condition state and chloride content, the 

values summarized in Table 3-1 are utilized to quantify the state of deterioration.  

Table 3-1. Correlation between the predicted chloride content and state of deterioration 

Condition State Description 

1 0.0 ≤ [𝐶𝑙] ≤ 0.5 kg/m3 (new or near new) 

2 0.5 ≤ [𝐶𝑙] ≤ 1.0 kg/m3 

3 1.0 ≤ [𝐶𝑙] ≤ 2.0 kg/m3 

4 2.0 ≤ [𝐶𝑙] ≤ 5.0 kg/m3 

5 5.0 ≤ [𝐶𝑙]  kg/m^3 (susceptible to failure) 

 

In this table, Condition State 1 represents an excellent condition, in which the structure is either 

intact or has negligible deterioration. As deterioration advances, the condition state increases 

until it reaches Condition State 5, in which the serviceability and performance of the structure 

comes into question because of the propagated damage.  
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Since the hazard function can be expressed in terms of factors that reflect the exposure 

conditions and structural characteristics, vector x with two variables, x1 and x2, is introduced to 

predict the duration of time in which the k-th structure maintains the i-th condition state based on 

the surface chloride concentration and rebar cover depth: 

𝜃𝑖
𝑘 = 𝛽𝑖,1 + 𝛽𝑖,2𝑥1

𝑘 + 𝛽𝑖,3𝑥2
𝑘   (3-8) 

where β is a vector that relates the hazard rate to the parameters affecting the deterioration 

process (i.e., surface chloride concentration and rebar cover depth). The estimated β parameters 

for four condition states are shown in Table 3-2. Since Condition State 5 is an absorbing state, 

there is no need to calculate the β parameters for it because the failure probabilities can be 

obtained directly from Equation 3-7.  

Table 3-2. Estimated parameters for the exponential hazard model 

State 𝜷𝒊,𝟏 𝜷𝒊,𝟐 𝜷𝒊,𝟑 

1 -0.0164 -0.3208 0.9075 

2 0.5155 -0.3809 0.1553 

3 0.4772 0.2457 -0.6126 

4 0.1280 0.4721 -0.5243 

 

From the obtained β parameters, the Markov transition probability matrix is formed following 

the procedure explained in the previous section. To investigate the effects of inspection intervals, 

one-year and three-year inspection intervals, in addition to a two-year inspection interval, which 

is recommended for highway bridges in the United States, are considered to evaluate the 

sensitivity of the results to the frequency of field data collection. Table 3-3 summarizes the 

transition probability matrices for the three inspection plans. It can be observed that the 

probability of remaining in Condition State 1 decreases as the inspection interval increases.  
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Table 3-3. Transition probabilities matrices for 1-, 2-, and 3-year inspection intervals 

Inspection Interval State 1 2 3 4 5 

1 year 

1 0.7140 0.2471 0.0354 0.0033 0.0002 

2 0 0.7538 0.2141 0.0295 0.0026 

3 0 0 0.7613 0.2102 0.0285 

4 0 0 0 0.7804 0.2196 

5 0 0 0 0 1.0000 

2 years 

1 0.5099 0.3628 0.1051 0.0196 0.0027 

2 0 0.5682 0.3244 0.0902 0.0171 

3 0 0 0.5796 0.3241 0.0963 

4 0 0 0 0.6090 0.3910 

5 0 0 0 0 1.0000 

3 years 

1 0.3641 0.3994 0.1757 0.0497 0.0111 

2 0 0.4283 0.3686 0.1554 0.0477 

3 0 0 0.4413 0.3747 0.1840 

4 0 0 0 0.4753 0.5247 

5 0 0 0 0 1.0000 

 

3.3. Cost Analysis 

The operational cost is an important concern for the functionality of a transportation network. As 

the network becomes more complex and its expected life-cycle increases, the maintenance costs 

gradually add up and may reach a level that greatly influences the decisions made regarding the 

future of deteriorating components. To address this concern, cost-effective preventive 

maintenance policies can be employed to reduce the total cost and number of structural failures 

while extending the service lives of structures (Lu et al. 2007). According to the FHWA, the 

average cost of replacing corroded highway bridges during the period from 1992 to 2002 was 

$3.8 billion (Lee 2012). Fernando et al. (2012) studied the most sustainable intervention 

strategies for bridges and concluded that intervention costs, travel costs, and vehicle operation 

costs have the most significant impacts on such strategies.  

The life-cycle cost (LCC) of a structure consists of the initial construction and operational costs. 

LCC analysis can help allocate appropriate resources for the design, construction, and operation 

of the structure. In the current study, the main focus is to minimize the operational cost of 

transportation network components that may lose their structural capacity due to the corrosion 

process. To obtain the total LCC of deteriorating structures, the following equation is utilized: 

LCC = 𝐶𝑐 + [𝐶𝐼𝑁 + 𝐶𝑀 + 𝐶𝑀
𝑢 ]  (3-9) 

where 𝐶𝑐 is the initial construction cost, 𝐶𝐼𝑁 is the inspection cost, 𝐶𝑀 is the maintenance cost, 

and 𝐶𝑀
𝑢  is the indirect cost due to maintenance activities (e.g., temporary closure of facilities and 

travel delays). The future maintenance expenditure is calculated based on the base year price 
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using a discount factor, α, that takes into account the time value of the money. This factor is 

defined in terms of interest rate i as follows: 

𝛼 = (1 + 𝑖)−1  (3-10) 

In practice, the discount rate is typically in the range of 2% to 8% depending on the economic 

situation and prospect. A high discount rate is suitable for a short service time, while a low 

discount rate favors a longer service time. To illustrate the probabilistic framework developed in 

the current study, the operational cost of a medium-span bridge located in Los Angeles, 

California, is evaluated (Alipour et al. 2011 and 2013). To identify the most appropriate 

maintenance actions, both cost-based and condition-based actions are examined. This analysis 

includes four different maintenance actions and three different inspection intervals to evaluate a 

range of actions currently taken in practice. The first set of actions is cost-based, which means 

that the budget is limited and that reaching a specific level of expenditure may dictate changes in 

the maintenance plans. Contrary to the cost-based strategies, the proposed condition-based 

strategies are assumed not to be affected by budget limitations to maintain certain condition 

states. Table 3-4 provides more detailed information about the four courses of action, which are 

further evaluated in the next section.  

Table 3-4. Cost-based and condition-based maintenance actions 

Action Description 

1 
Step 1: Current state improves to Condition State 1  

Step 2: Current state improves to Condition State 2 if (𝐶𝐼𝑁 + 𝐶𝑀 + 𝐶𝑀
𝑢 ) > 𝐶𝑐 

2 Step 1: Current state improves to Condition State 1  

3 
Step 1: No action until the bridge condition reaches Condition States 4 and 5 

Step 2: Current state improves to Condition State 1  

4 Step 1: Current state improves to the previous condition state 

 

The four actions considered along with the three inspection intervals form a set of 12 scenarios 

for improving the performance and safety of aging components. It is necessary to mention that 

the inspection cost is constant for all of the condition states; however, the maintenance cost 

depends on the current state and changes based on the extent of improvement recommended by 

decision-making authorities.  

3.4. Assessment of Human Judgment Factor 

It has been found that when a group of experts is asked to evaluate the condition state of a 

specific bridge based on identical inspection data, their opinions about the state of deterioration 

can be completely different. Such variation in expert opinions is a result of a wide range of 

parameters, including experience, training, and even personal characteristics. Although the 

deviation of the estimated condition state from the actual state of a structure can be justified, its 

consequences for maintenance planning and budget allocation cannot be neglected. To address 

this issue, it is necessary to capture the effects of expert judgment discretion and the uncertainties 
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associated with it using a probabilistic approach. The thinking process of experts in arriving at a 

judgment about the condition state of a deteriorating structure can be explained by Brunswikian 

theory. Adelman et al. (2003) used Brunswikian theory to study how hierarchical teams adapt to 

increasing levels of time pressure. They simulated an air defense task with three team members 

(a leader and two subordinates) and evaluated their judgments on an aircraft’s hostility level. 

Kirlik (2010) used the same theory to model clinical judgment in a representative experimental 

condition.  

The lens model presented by Brunswik (1952) represents a situation where an individual or 

expert makes a decision about the true state of a distal variable based on the available 

information. The extended lens model, named the multi-level lens model, was presented by 

Brehmer and Hagafors (1986). The multi-level model involves an intermediate process, in which 

subordinate staff make recommendations based on existing information and pass those 

recommendations to the expert to make the final decision. Gigerenzer et al. (1991) proposed 

probabilistic mental models for cognitive processes in judgment. These models characterize the 

thinking process with respect to various confidence levels. In order to consider the expert 

judgment factor in predicting the future condition of deteriorating structures, probabilistic mental 

models have been utilized in the current study. For this purpose, three groups of experts are 

asked to identify the condition state of a set of deteriorated bridges, and then a confidence level 

is assigned to the estimated numbers. To quantify the confidence level, a confidence scale 

consisting of seven levels (i.e., I through VII) is provided. Starting from I and ending at VII, this 

confidence scale represents 0%, 1% to 20%, 21% to 40%, 41% to 60%, 61% to 80%, 81% to 

99%, and 100% confidence levels, respectively. For the purpose of this LCC analysis, the mean 

values of the confidence levels are used to update the transition matrix at each time interval.  

To start the analysis, it is assumed that the structure is in Condition State 1 (i.e., new or near-new 

condition). The condition state is then updated at each time step based on both the transition 

matrix and human judgment factor. This is one of the unique contributions of the current study to 

further improve the accuracy of life-cycle performance predictions of deteriorating structures. To 

better understand the contribution of human judgment, three categories of human judgment are 

investigated and the obtained results are compared with the ones that neglect this factor. The first 

and third categories consist of “optimistic” and “pessimistic” experts who constantly exaggerate 

the actual condition of the structure to a better and worse condition, respectively. The second 

category includes “realistic” experts. The realistic experts are expected to make an unbiased 

judgment, although their level of confidence may vary because of their level of experience and 

training. Table 3-5 summarizes the confidence levels assigned to each of the three categories of 

experts. It should be noted that if realistic experts estimate each condition state with the highest 

confidence level (i.e., VII), the predicted condition state will be the same as the one predicted 

without considering the human judgment factor.  
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Table 3-5. Confidence level matrices for three categories of experts 

Expert 

categories 

Condition State 

Optimistic Realistic Pessimistic 

Confidence 

level 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

VII     VII     II VII    

VII II     VII     II VII   

 VII II     VII     II VII  

  VII II     VII     II VII 

   VII II     VII     VII 

 

Considering the potential consequences of the human judgment factor, the LCCs of the 

deteriorating structures under investigation are calculated for all 12 scenarios introduced in the 

previous section. Figure 3-1 illustrates the results of the cost analyses for the three categories of 

experts.  

 

Figure 3-1. LCC analyses for different inspection intervals and maintenance actions, 

including the human judgment factor 

It is evident that the operational costs predicted by the optimistic and pessimistic experts are 

always lower and higher, respectively, than those estimated by the realistic experts. Nevertheless, 

the estimates obtained from the category of optimistic experts tend to be closer to the ones 

provided by the category of realistic experts. Among all of the proposed scenarios, the one that 

aims at improving the existing condition state to Condition State 1 in every year is found to be 

the most optimized strategy for both the optimistic and realistic categories. This, however, is not 

the case for the pessimistic category, which favors an improvement to Condition State 1 every 

three years. It should be noted that the optimized cost predicted by the pessimistic experts is 

almost as twice as high as the costs obtained from the other two categories of experts.  
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3.5. Confidence Level and Weight 

In addition to the categories discussed earlier, there has always been a concern about the level of 

confidence of the inspectors. Although the realistic experts tend to deliver unbiased predictions, 

their confidence level may affect maintenance plans and estimated costs. To measure this factor, 

the category of realistic experts is divided into three subcategories, each with a certain level of 

confidence. This is reflected in the confidence level matrices listed in Table 3-6.  

Table 3-6. Confidence level matrices for three subcategories of realistic experts 

Expert 

categories 

Condition State 

Realistic 

Confidence level 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

VII II    VI III    V IV    

II VII II   III VI III   IV V IV   

 II VII II   III VI III   IV V IV  

  II VII II   III VI III   IV V IV 

   II VII    III VI    IV V 

 

The LCC calculated for each of these three subcategories is shown in Figure 3-2. In all of the 

scenarios under consideration, as the confidence level decreases from VII to V, the operational 

cost increases, highlighting the importance of proper training and clear inspection criteria.  

 

Figure 3-2. LCC analyses for the category of realistic experts with different confidence 

levels 

If a group of e experts makes independent judgments using the same set of information, the 

condition state of the deteriorating structure can be estimated by a weighted average: 
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𝑷 = ∑ 𝑤𝑖 𝑷𝑖 
𝑒
𝑖=1  (3-11) 

where 𝑃𝑖 is the condition state vector based on the i-th expert judgment and the 𝑤𝑖 is the weight 

reflecting the accuracy of the i-th expert in making a judgment. The weight associated with an 

expert can be calculated from the following: 

𝑤𝑖 = 𝑟𝑎𝑖
𝑚/∑ 𝑟𝑎𝑖

𝑚 (𝑚 ≥ 0) 𝑛
𝑖=1  (3-12) 

where 𝑟𝑎𝑖
𝑚 is the achievement factor of the i-th expert determined from the previous cases and m 

is the degree of importance (Rao et al. 2004). In this study, three experts from each of the three 

categories are asked to evaluate the condition state. All of the experts have equal capability in 

terms of qualification and have access to the same information. The achievement factor of each 

expert is determined by a linear regression model. Because of the uncertainty inherent in the 

achievement factor, a set of cases is considered in the current study for weighting the expert 

judgment. In these cases, an achievement factor of 0.95, 0.85, and/or 0.75 is randomly assigned 

to the realistic, pessimistic, and optimistic experts, respectively. Based on the outcome of the 

performed analyses, Figure 3-3 summarizes the percentage of changes in the estimated LCC 

when a higher weight factor is considered for either the pessimistic or optimistic category in 

comparison to the realistic one.  

 

Figure 3-3. Percentage of changes in the estimated operational cost considering a weight 

factor for the three categories of experts 

This result clearly highlights the level of contribution of the human judgment factor to the 

decision-making algorithms that take into account the condition states of aging network 

components. 
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3.6. Transition Matrix due to Extreme Events 

Bridge management systems utilize a stochastic Markovian methodology to identify a bridge’s 

condition state during the expected service life. The current systems are, however, mainly 

focused on deterioration processes and do not take into account the degradation of the condition 

state due to sudden extreme events, such as earthquakes. The cascading effects of aging 

mechanisms and earthquake events on the capacity loss of bridges have been confirmed and 

quantified through a number of research efforts. Among them, Choe et al. (2009) and Simon et 

al. (2010) considered the effects of capacity reduction on the seismic performance of corroding 

bridges. The studies, however, lack an investigation of the nonlinear time-dependent parameters 

that influence the corrosion process. Alipour et al. (2011 and 2013) developed a computational 

methodology to study how corrosion adversely affects the long-term performance of reinforced 

concrete bridges. The study revealed that the lateral load resistance of a bridge gradually drops 

after the corrosion initiation time, primarily due to cracks in the concrete and a loss of mass in 

the steel rebars. The study also explored the degradation of the performance of bridges subjected 

to three sets of ground motions while the bridges were exposed to the attack of chloride ions at 

the same time.  

Based on the wealth of knowledge available in the literature, the current study introduces one of 

the first systematic efforts to incorporate the probability of the occurrence and potential 

consequences of natural hazards into bridge management systems. For this purpose, the 

Markovian transition matrices discussed in previous sections are modified by integrating hazard 

characteristics. Each natural hazard may cause either structural failure or degradation depending 

on the intensity of the hazard and the condition state of the bridge elements. Therefore, a set of 

transition matrices is generated in the current study to capture the effects of earthquakes on 

deteriorating bridges. The proposed methodology is designed to be conveniently added to 

existing bridge management systems to improve the accuracy of predictions for single and even 

multiple hazards.  

To calculate the corresponding transition probabilities, fragility curves are utilized to statistically 

evaluate the expected response of bridges under region-specific seismic hazards. Seismic 

fragility is a relationship between the ground motion intensity that excites a structure and the 

probability of damage to the structure exceeding specific limit states. Fragility curves can be 

developed either empirically using data collected from past earthquakes or analytically using 

representative bridge models and ground motion records. In the fragility models, the extent of 

damage is typically defined in terms of discrete categories, such as light, moderate, and severe. 

Therefore, fragility curves are generated by estimating the probability of exceeding predefined 

damage states under a range of possible ground motion intensity measures, such as peak ground 

acceleration (PGA). A two-parameter, i.e. median 𝜇𝑗 and log-standard deviation 𝜎𝑗 , lognormal 

distribution is used in the current study to express the fragility curves (Shinozuka et al. 2000). 

For the j-th damage state, the fragility curve is developed following the formula below: 

𝐹𝑗(𝑃𝐺𝐴𝑖|𝜎𝑗, 𝜇𝑗) = Φ [
ln(𝑃𝐺𝐴𝑖/𝜇𝑗)

𝜎𝑗
]  (3-13) 
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where 𝐹𝑗 reveals the probability of exceeding the damage state of j and Φ[. ] indicates the 

standard normal distribution function. Figure 3-4 shows the fragility curves obtained for one of 

the representative two-span bridges, which has a medium span length and column height of 10 

m.  

  
(a) (b) 

  
(c) (d) 

Figure 3-4. Developed fragility curves for the representative two-span bridge in each of the 

four condition states: (a) Condition State 1, (b) Condition State 2, (c) Condition State 3, 

and (d) Condition State 4 

It can be seen in this figure that depending on the current condition state, the bridge may stay in 

the same condition or degrade to a worse one based on the intensity of the ground motion. It 

must be noted that the fragility curves are not generated for the last condition state because it is 

an absorbing one. The absorbing state is a state that, once entered, cannot be left, e.g. failure of 

the bridge. 

As mentioned before, seismic events are considered in the current study to be extreme events. A 

set of three hazard risks, including low, medium, and high, are investigated to understand the 

effects of site-specific earthquakes with different intensities (a range of PGA values) on the life-

cycle performance and cost of bridges. It should be noted that, contrary to deterioration 

processes, as the level of expected seismic hazard increases, its corresponding probability of 

occurrence decreases. Therefore, for the proper incorporation of seismic hazard in the Markovian 
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matrix, it is necessary to know the probability of occurrence of various ground motion intensities 

in addition to their effects on the bridge elements. To achieve this goal, site-specific hazard 

curves are paired with the fragility curves. Seismic hazard analysis helps to quantify the 

probability of exceeding various ground motion intensities at a site, given all possible earthquake 

scenarios. Figure 3-5 shows three seismic hazard curves obtained from the US Geological 

Survey (USGS) for bridges located in southern California.  

 

Figure 3-5. Hazard curves for three different seismic hazard risks obtained from USGS 

For example, in a region with a medium seismic risk, the probability of occurrence of an 

earthquake with a PGA of 0.5 g equals 0.06, which means that a bridge under the impact of such 

an earthquake will transition from the current condition state to other deterioration states with a 

probability of 0.06 multiplied by the corresponding earthquake transition matrix (Table 3-7).  
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Table 3-7. Transition probabilities matrix due to earthquake events 

State 1 2 3 4 Beyond 

PGA=0.50g 

1 0.26 0.53 0.18 0.02 0.00 

2 0.00 0.67 0.28 0.04 0.00 

3 0.00 0.00 0.80 0.18 0.03 

4 0.00 0.00 0.00 0.80 0.20 

Beyond 0.00 0.00 0.00 0.00 1.00 

PGA=0.75g 

1 0.11 0.49 0.32 0.07 0.01 

2 0.00 0.49 0.39 0.10 0.02 

3 0.00 0.00 0.67 0.26 0.07 

4 0.00 0.00 0.00 0.70 0.30 

Beyond 0.00 0.00 0.00 0.00 1.00 

PGA=1.00g 

1 0.04 0.33 0.42 0.16 0.04 

2 0.00 0.29 0.45 0.20 0.06 

3 0.00 0.00 0.50 0.34 0.15 

4 0.00 0.00 0.00 0.56 0.44 

Beyond 0.00 0.00 0.00 0.00 1.00 

 

Based on the available data, Markovian transition matrices are calculated for all of the possible 

earthquake intensities in the region. The results for three specific PGA values, 0.5 g, 0.75 g, and 

1.0 g, are summarized in Table 3-7. It is clear that as an earthquake becomes more severe, the 

probability of experiencing structural degradation and damage increases. This trend is more 

obvious for Condition States 3 and 4. 

Based on the calculated Markovian transition matrices for aging mechanism and seismic hazard, 

the future condition of bridges can be estimated. The evolution of a Markov chain is expressed 

through the Chapman-Kolmogorov equation. Therefore, the state of the Markov chain at time 

n, 𝜇(𝑛) = 𝑃(𝑥𝑛 = 𝑖) is estimated as follows: 

𝜇(𝑛) = 𝜇(0)𝑃𝑛  (3-14) 

where 𝑃𝑛 denotes the nth power of matrix 𝑃. Hence, in order to calculate the state of the Markov 

chain at time n, all we need is the initial distribution 𝜇(0) and the transition matrix 𝑃. Figure 3-6 

shows the average condition of a bridge in the next 10 years under only the aging mechanism as 

well as under the simultaneous effects of the aging mechanism and earthquakes.  
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(a) (b) 

Figure 3-6 Prediction of future condition state of a bridge in next 10 years assuming that 

the bridge is in Condition State 1 initially under (a) only the aging mechanism and (b) the 

simultaneous effects of the aging mechanism and seismic hazard 

It can be observed that considering only the aging mechanism, the future condition of the bridge 

is underestimated, and therefore planning for maintenance/repair actions will be inaccurate and, 

consequently, the required budget for improvement actions will be imprecise. The life-cycle cost 

of a bridge is calculated for the case where only the aging mechanism is considered and the case 

where both the aging mechanism and seismic hazard are taken into account. The results of the 

LCC analysis reveal that the estimated cost considering both gradual and sudden degradation is 

approximately 45% higher than the cost due to gradual aging only.  
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CHAPTER 4. SUMMARY 

To predict the future condition of RC structures and plan for optimized repair and maintenance 

actions, it is critical to evaluate the extent of degradation over time. Since chloride penetration is 

the main source of degradation for RC structures, the current study developed a comprehensive 

finite element model to capture the effects of the most important external and internal parameters 

related to chloride content at different depths of RC structures. Moreover, the corrosion process 

in the bridge elements was modeled comprehensively using the CA framework. It was revealed 

that both the FE and CA methods are capable of generating chloride profiles in reasonable 

agreement with experimental results. The impacts of uncertainty and variation on the parameters 

involved in the deterioration process were fully investigated. It was realized that temperature is a 

significant parameter in the reinforcement corrosion process.  

To study the effects of variations in temperature, relative humidity, and surface chloride over the 

next 100 years, climate change scenarios were defined and implemented in the developed FE 

framework. Environmental data for three cities in the US Midwest region, Chicago, Des Moines, 

and Minneapolis, were gathered in order to incorporate their effects into the chloride penetration 

process. Incorporating the parameters of climate change scenarios into the developed finite 

element models, chloride concentrations were simulated at the level of the rebars in RC 

structures. It was observed that corrosion initiation time decreases on average 13%, 22%, 29%, 

and 39% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, respectively. 

In addition to the aging mechanism, which results in a gradual degradation in condition, the 

occurrence of extreme events such as flooding, earthquakes, and hurricanes can cause an abrupt 

reduction in the functionality of bridges. In this study, a comprehensive risk-based framework 

was developed to evaluate the future condition state of bridges by taking into consideration the 

simultaneous effects of gradual deterioration (e.g., aging) and extreme events (e.g., earthquakes). 

This model is designed to be directly implemented into existing bridge management systems to 

determine the damage condition of bridges with greater accuracy and consequently identify the 

most appropriate maintenance strategies. The condition states of bridges are estimated using a 

Markovian transition matrix. The Markovian matrix consists of two separate matrices capturing 

the effects of both aging and earthquake events. The entries of the aging matrix are calculated 

according to a hazard function, while the earthquake matrix is estimated based on fragility and 

hazard curves. The difference between considering and not considering an extreme event in the 

management of bridges was shown through life-cycle cost analyses, and it was concluded that 

the incorporation of natural hazards into bridge management systems plays an important role in 

determining the required maintenance budget, providing the best maintenance strategies, and 

planning for emergency response actions. This is completely in line with the objectives of MAP-

21 and directly helps transportation agencies minimize both direct and indirect costs. 

In order to generate the Markovian matrix representing the aging mechanism, determining the 

most recent state of degradation of a bridge is required. Recognizing the fact that the 

identification of the actual condition state plays an important role in the management of aging 

components, a comprehensive stochastic approach was proposed in the current study to 

understand the human judgment factor and quantify its effects on the total operational costs. This 
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was achieved through a systematic investigation of stochastic deterioration processes, hazard 

functions, and probabilistic mental models. By considering a range of practical inspection 

intervals and maintenance actions, the contribution of expert opinion to life-cycle performance 

and cost analyses was measured using three categories reflecting various cases in which the 

predicted condition state is different from the actual one. It is expected that the outcome of this 

study can be directly implemented into the current decision-making algorithms to improve the 

management of transportation network components by taking into account the errors and 

uncertainties originating from human judgment. 
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